Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079143043> ?p ?o ?g. }
- W2079143043 endingPage "510" @default.
- W2079143043 startingPage "502" @default.
- W2079143043 abstract "Pepper AR, Gall C, Mazzuca DM, Melling CWJ, White DJG. Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts. Xenotransplantation 2009; 16: 502–510. © 2009 John Wiley & Sons A/S. Abstract: Background: Islet transplantation is potentially a promising therapy for the restoration of carbohydrate control to diabetic patients. However, the global application of islet transplantation requires a ubiquitous source of β cells. The xenotransplantation of porcine islets would provide such a source. Success in porcine islet xenografting has been achieved in diabetic primates. However, there are few reports of reversal of diabetes with porcine islet xenografts in rodent models of diabetes, relative to the number of successful rodent experiments performed as allografts. Here we report for the first time the inability of porcine (and human) insulin to control blood glucose levels in diabetic rodents determined by a series of dose escalating studies. Methods: Insulin was administered intravenously to streptozotocin induced diabetic Lewis rats, Balb/c and athymic Balb/c mice (n = 5 per group) at the following doses: Group I “physiological dose” (pd) of 0.16 U/kg for a total dose of 40 mU to a 250 g rat. Group II received 0.64 U/kg (4xpd), group III 1.6 U/kg (10xpd) and group IV 6.4 U/kg (40xpd). Blood glucose levels were monitored in each animal at seven time points: 0 (pre‐injection), 10 min, 20 min, 30 min, 45 min, 1 h, 1.5 h, 2 h and 3 h post‐injection. Serum insulin levels were also determined. Results: Diabetic Lewis rats achieved a maximum reduction in blood glucose from 22.1 ± 1.8mmol/l to 8.0 ± 3.1 mmol/l (a 63.7% reduction), 90 minutes post‐injection of 6.4 U/kg dose of porcine insulin (40xpd). Human insulin was less effective at reducing blood glucose levels in rats than porcine insulin (P < 0.001). Porcine insulin reduced blood glucose levels in Balb/c mice from a mean of 18.2 ± 2.1 mmol/l to a hypoglycemic minimum of 1.26 ± 0.18 mmol/l a reduction of 93.0%, 60 min post‐injection of the maximum dose of 6.4 U/kg. Balb/c mice were significantly more responsive to porcine insulin than Lewis rats at doses of 0.64 U/kg (P < 0.001), 1.6 U/kg (P < 0.05) and 6.4 U/kg (P < 0.001). Athymic Balb/c nude mice reached a maximum reduction in blood glucose from 21.6 ± 1.8 mmol/l to 3.6 ± 0.9 mmol/l (a 83.4% reduction) 120 min post‐injection at a dose of 6.4 U/kg. Overall, athymic Balb/c nude mice were more resistant to porcine insulin than immunocompetent Balb/c mice at doses of 0.64 U/kg (P < 0.001), 1.6 U/kg (P < 0.001) and 6.4 U/kg (P < 0.05). Insulin diluent alone marginally increased blood glucose levels in all animals tested. Conclusions: Our results suggest that restoration of normoglycemia in diabetic rodents is not ideal for testing porcine islets xenografts since the reversals of diabetes in these species requires 20 to 40 times the dose of porcine insulin used in humans." @default.
- W2079143043 created "2016-06-24" @default.
- W2079143043 creator A5005168186 @default.
- W2079143043 creator A5053854904 @default.
- W2079143043 creator A5054213528 @default.
- W2079143043 creator A5082101450 @default.
- W2079143043 creator A5089609036 @default.
- W2079143043 date "2009-11-01" @default.
- W2079143043 modified "2023-10-16" @default.
- W2079143043 title "Diabetic rats and mice are resistant to porcine and human insulin: flawed experimental models for testing islet xenografts" @default.
- W2079143043 cites W1506698018 @default.
- W2079143043 cites W1536891815 @default.
- W2079143043 cites W1964888172 @default.
- W2079143043 cites W1965034536 @default.
- W2079143043 cites W1971953924 @default.
- W2079143043 cites W1975353865 @default.
- W2079143043 cites W1981410337 @default.
- W2079143043 cites W1989692125 @default.
- W2079143043 cites W2000358017 @default.
- W2079143043 cites W2007276052 @default.
- W2079143043 cites W2008098953 @default.
- W2079143043 cites W2012398091 @default.
- W2079143043 cites W2021893171 @default.
- W2079143043 cites W2023032975 @default.
- W2079143043 cites W2024953955 @default.
- W2079143043 cites W2028694541 @default.
- W2079143043 cites W2029068932 @default.
- W2079143043 cites W2029698990 @default.
- W2079143043 cites W2034902726 @default.
- W2079143043 cites W2034999197 @default.
- W2079143043 cites W2035417593 @default.
- W2079143043 cites W2044669680 @default.
- W2079143043 cites W2048260521 @default.
- W2079143043 cites W2050276336 @default.
- W2079143043 cites W2060275191 @default.
- W2079143043 cites W2066159327 @default.
- W2079143043 cites W2067278859 @default.
- W2079143043 cites W2068451800 @default.
- W2079143043 cites W2069427034 @default.
- W2079143043 cites W2078950332 @default.
- W2079143043 cites W2083709517 @default.
- W2079143043 cites W2084219974 @default.
- W2079143043 cites W2085235290 @default.
- W2079143043 cites W2086019413 @default.
- W2079143043 cites W2096519012 @default.
- W2079143043 cites W2101263996 @default.
- W2079143043 cites W2104491684 @default.
- W2079143043 cites W2105301782 @default.
- W2079143043 cites W2109397744 @default.
- W2079143043 cites W2111942211 @default.
- W2079143043 cites W2143908339 @default.
- W2079143043 cites W2144220130 @default.
- W2079143043 cites W2145544462 @default.
- W2079143043 cites W2154536521 @default.
- W2079143043 cites W2155116317 @default.
- W2079143043 cites W2155976803 @default.
- W2079143043 cites W2167530314 @default.
- W2079143043 cites W2167900134 @default.
- W2079143043 cites W2328786770 @default.
- W2079143043 cites W2337415157 @default.
- W2079143043 cites W244844078 @default.
- W2079143043 cites W2884870640 @default.
- W2079143043 doi "https://doi.org/10.1111/j.1399-3089.2009.00548.x" @default.
- W2079143043 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/20042050" @default.
- W2079143043 hasPublicationYear "2009" @default.
- W2079143043 type Work @default.
- W2079143043 sameAs 2079143043 @default.
- W2079143043 citedByCount "30" @default.
- W2079143043 countsByYear W20791430432012 @default.
- W2079143043 countsByYear W20791430432013 @default.
- W2079143043 countsByYear W20791430432014 @default.
- W2079143043 countsByYear W20791430432015 @default.
- W2079143043 countsByYear W20791430432016 @default.
- W2079143043 countsByYear W20791430432017 @default.
- W2079143043 countsByYear W20791430432018 @default.
- W2079143043 countsByYear W20791430432020 @default.
- W2079143043 countsByYear W20791430432021 @default.
- W2079143043 countsByYear W20791430432022 @default.
- W2079143043 countsByYear W20791430432023 @default.
- W2079143043 crossrefType "journal-article" @default.
- W2079143043 hasAuthorship W2079143043A5005168186 @default.
- W2079143043 hasAuthorship W2079143043A5053854904 @default.
- W2079143043 hasAuthorship W2079143043A5054213528 @default.
- W2079143043 hasAuthorship W2079143043A5082101450 @default.
- W2079143043 hasAuthorship W2079143043A5089609036 @default.
- W2079143043 hasConcept C126322002 @default.
- W2079143043 hasConcept C134018914 @default.
- W2079143043 hasConcept C165220095 @default.
- W2079143043 hasConcept C2778442404 @default.
- W2079143043 hasConcept C2779280383 @default.
- W2079143043 hasConcept C2779306644 @default.
- W2079143043 hasConcept C2911091166 @default.
- W2079143043 hasConcept C555293320 @default.
- W2079143043 hasConcept C71924100 @default.
- W2079143043 hasConceptScore W2079143043C126322002 @default.
- W2079143043 hasConceptScore W2079143043C134018914 @default.
- W2079143043 hasConceptScore W2079143043C165220095 @default.
- W2079143043 hasConceptScore W2079143043C2778442404 @default.