Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079164956> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W2079164956 endingPage "381" @default.
- W2079164956 startingPage "369" @default.
- W2079164956 abstract "Pharmacokinetic studies of drug and metabolite concentrations in the blood are usually conducted as crossover trials, especially in Phases I and II. A longitudinal series of measurements is collected on each subject within each period. Dependence among such observations, within and between periods, will generally be fairly complex, requiring two levels of variance components, for the subjects and for the periods within subjects, and an autocorrelation within periods as well as a time-varying variance. Until now, the standard way in which this has been modeled is using a multivariate normal distribution. Here, we introduce procedures for simultaneously handling these various types of dependence in a wider class of distributions called the multivariate power exponential and Student t families. They can have the heavy tails required for handling the extreme observations that may occur in such contexts. We also consider various forms of serial dependence among the observations and find that they provide more improvement to our models than do the variance components. An integrated Ornstein-Uhlenbeck (IOU) stochastic process fits much better to our data set than the conventional continuous first-order autoregression, CAR(1). We apply these models to a Phase I study of the drug, flosequinan, and its metabolite." @default.
- W2079164956 created "2016-06-24" @default.
- W2079164956 creator A5022069795 @default.
- W2079164956 creator A5074203048 @default.
- W2079164956 date "2000-09-08" @default.
- W2079164956 modified "2023-09-24" @default.
- W2079164956 title "MODELING PHARMACOKINETIC DATA USING HEAVY-TAILED MULTIVARIATE DISTRIBUTIONS" @default.
- W2079164956 cites W1969761972 @default.
- W2079164956 cites W2047140520 @default.
- W2079164956 cites W2059185356 @default.
- W2079164956 cites W2138477971 @default.
- W2079164956 cites W2154354000 @default.
- W2079164956 cites W2502670554 @default.
- W2079164956 cites W4256431090 @default.
- W2079164956 doi "https://doi.org/10.1081/bip-100102500" @default.
- W2079164956 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/10959917" @default.
- W2079164956 hasPublicationYear "2000" @default.
- W2079164956 type Work @default.
- W2079164956 sameAs 2079164956 @default.
- W2079164956 citedByCount "6" @default.
- W2079164956 countsByYear W20791649562012 @default.
- W2079164956 countsByYear W20791649562015 @default.
- W2079164956 countsByYear W20791649562020 @default.
- W2079164956 crossrefType "journal-article" @default.
- W2079164956 hasAuthorship W2079164956A5022069795 @default.
- W2079164956 hasAuthorship W2079164956A5074203048 @default.
- W2079164956 hasConcept C105795698 @default.
- W2079164956 hasConcept C121955636 @default.
- W2079164956 hasConcept C122507166 @default.
- W2079164956 hasConcept C144133560 @default.
- W2079164956 hasConcept C149782125 @default.
- W2079164956 hasConcept C154945302 @default.
- W2079164956 hasConcept C161584116 @default.
- W2079164956 hasConcept C192424360 @default.
- W2079164956 hasConcept C196083921 @default.
- W2079164956 hasConcept C33923547 @default.
- W2079164956 hasConcept C38180746 @default.
- W2079164956 hasConcept C41008148 @default.
- W2079164956 hasConcept C5297727 @default.
- W2079164956 hasConceptScore W2079164956C105795698 @default.
- W2079164956 hasConceptScore W2079164956C121955636 @default.
- W2079164956 hasConceptScore W2079164956C122507166 @default.
- W2079164956 hasConceptScore W2079164956C144133560 @default.
- W2079164956 hasConceptScore W2079164956C149782125 @default.
- W2079164956 hasConceptScore W2079164956C154945302 @default.
- W2079164956 hasConceptScore W2079164956C161584116 @default.
- W2079164956 hasConceptScore W2079164956C192424360 @default.
- W2079164956 hasConceptScore W2079164956C196083921 @default.
- W2079164956 hasConceptScore W2079164956C33923547 @default.
- W2079164956 hasConceptScore W2079164956C38180746 @default.
- W2079164956 hasConceptScore W2079164956C41008148 @default.
- W2079164956 hasConceptScore W2079164956C5297727 @default.
- W2079164956 hasIssue "3" @default.
- W2079164956 hasLocation W20791649561 @default.
- W2079164956 hasLocation W20791649562 @default.
- W2079164956 hasOpenAccess W2079164956 @default.
- W2079164956 hasPrimaryLocation W20791649561 @default.
- W2079164956 hasRelatedWork W1532486154 @default.
- W2079164956 hasRelatedWork W1578652641 @default.
- W2079164956 hasRelatedWork W1588115066 @default.
- W2079164956 hasRelatedWork W1791438223 @default.
- W2079164956 hasRelatedWork W1965959053 @default.
- W2079164956 hasRelatedWork W1984185029 @default.
- W2079164956 hasRelatedWork W1987447492 @default.
- W2079164956 hasRelatedWork W2011685735 @default.
- W2079164956 hasRelatedWork W2030798288 @default.
- W2079164956 hasRelatedWork W2040805429 @default.
- W2079164956 hasRelatedWork W2047140520 @default.
- W2079164956 hasRelatedWork W2055708756 @default.
- W2079164956 hasRelatedWork W2058059649 @default.
- W2079164956 hasRelatedWork W2061743155 @default.
- W2079164956 hasRelatedWork W2090131562 @default.
- W2079164956 hasRelatedWork W2119829158 @default.
- W2079164956 hasRelatedWork W2317634038 @default.
- W2079164956 hasRelatedWork W2344672063 @default.
- W2079164956 hasRelatedWork W3017849140 @default.
- W2079164956 hasRelatedWork W3200530198 @default.
- W2079164956 hasVolume "10" @default.
- W2079164956 isParatext "false" @default.
- W2079164956 isRetracted "false" @default.
- W2079164956 magId "2079164956" @default.
- W2079164956 workType "article" @default.