Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079221635> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W2079221635 abstract "In many real world applications such as satellite image analysis, gene function prediction, and insider threat detection, the data collected from heterogeneous sources often exhibit multiple types of heterogeneity, such as task heterogeneity, view heterogeneity, and label heterogeneity. To address this problem, we propose a Hierarchical Multi-Latent Space (HiMLS) learning approach to jointly model the triple types of heterogeneity. The basic idea is to learn a hierarchical multi-latent space by which we can simultaneously leverage the task relatedness, view consistency and the label correlations to improve the learning performance. We first propose a multi-latent space framework to model the complex heterogeneity, which is used as a building block to stack up a multi-layer structure so as to learn the hierarchical multi-latent space. In such a way, we can gradually learn the more abstract concepts in the higher level. Then, a deep learning algorithm is proposed to solve the optimization problem. The experimental results on various data sets show the effectiveness of the proposed approach." @default.
- W2079221635 created "2016-06-24" @default.
- W2079221635 creator A5019594660 @default.
- W2079221635 creator A5073158087 @default.
- W2079221635 date "2015-08-10" @default.
- W2079221635 modified "2023-10-01" @default.
- W2079221635 title "Model Multiple Heterogeneity via Hierarchical Multi-Latent Space Learning" @default.
- W2079221635 cites W1984983329 @default.
- W2079221635 cites W1987015131 @default.
- W2079221635 cites W1996462768 @default.
- W2079221635 cites W2007972815 @default.
- W2079221635 cites W2032612424 @default.
- W2079221635 cites W2038531878 @default.
- W2079221635 cites W2043545458 @default.
- W2079221635 cites W2048679005 @default.
- W2079221635 cites W2052684427 @default.
- W2079221635 cites W2066340877 @default.
- W2079221635 cites W2072942628 @default.
- W2079221635 cites W2094651715 @default.
- W2079221635 cites W2099330554 @default.
- W2079221635 cites W2103024562 @default.
- W2079221635 cites W2114315281 @default.
- W2079221635 cites W2129026672 @default.
- W2079221635 cites W2134604967 @default.
- W2079221635 cites W2146241755 @default.
- W2079221635 cites W2405657938 @default.
- W2079221635 cites W2913340405 @default.
- W2079221635 doi "https://doi.org/10.1145/2783258.2783330" @default.
- W2079221635 hasPublicationYear "2015" @default.
- W2079221635 type Work @default.
- W2079221635 sameAs 2079221635 @default.
- W2079221635 citedByCount "14" @default.
- W2079221635 countsByYear W20792216352016 @default.
- W2079221635 countsByYear W20792216352017 @default.
- W2079221635 countsByYear W20792216352018 @default.
- W2079221635 countsByYear W20792216352019 @default.
- W2079221635 countsByYear W20792216352021 @default.
- W2079221635 crossrefType "proceedings-article" @default.
- W2079221635 hasAuthorship W2079221635A5019594660 @default.
- W2079221635 hasAuthorship W2079221635A5073158087 @default.
- W2079221635 hasConcept C111919701 @default.
- W2079221635 hasConcept C119857082 @default.
- W2079221635 hasConcept C153083717 @default.
- W2079221635 hasConcept C154945302 @default.
- W2079221635 hasConcept C162324750 @default.
- W2079221635 hasConcept C187736073 @default.
- W2079221635 hasConcept C2524010 @default.
- W2079221635 hasConcept C2777210771 @default.
- W2079221635 hasConcept C2778572836 @default.
- W2079221635 hasConcept C2780297707 @default.
- W2079221635 hasConcept C2780451532 @default.
- W2079221635 hasConcept C33923547 @default.
- W2079221635 hasConcept C41008148 @default.
- W2079221635 hasConceptScore W2079221635C111919701 @default.
- W2079221635 hasConceptScore W2079221635C119857082 @default.
- W2079221635 hasConceptScore W2079221635C153083717 @default.
- W2079221635 hasConceptScore W2079221635C154945302 @default.
- W2079221635 hasConceptScore W2079221635C162324750 @default.
- W2079221635 hasConceptScore W2079221635C187736073 @default.
- W2079221635 hasConceptScore W2079221635C2524010 @default.
- W2079221635 hasConceptScore W2079221635C2777210771 @default.
- W2079221635 hasConceptScore W2079221635C2778572836 @default.
- W2079221635 hasConceptScore W2079221635C2780297707 @default.
- W2079221635 hasConceptScore W2079221635C2780451532 @default.
- W2079221635 hasConceptScore W2079221635C33923547 @default.
- W2079221635 hasConceptScore W2079221635C41008148 @default.
- W2079221635 hasFunder F4320306076 @default.
- W2079221635 hasFunder F4320321001 @default.
- W2079221635 hasFunder F4320332180 @default.
- W2079221635 hasFunder F4320338295 @default.
- W2079221635 hasLocation W20792216351 @default.
- W2079221635 hasOpenAccess W2079221635 @default.
- W2079221635 hasPrimaryLocation W20792216351 @default.
- W2079221635 hasRelatedWork W1990932233 @default.
- W2079221635 hasRelatedWork W2016546218 @default.
- W2079221635 hasRelatedWork W2075933280 @default.
- W2079221635 hasRelatedWork W2345283274 @default.
- W2079221635 hasRelatedWork W2345735193 @default.
- W2079221635 hasRelatedWork W2888475809 @default.
- W2079221635 hasRelatedWork W2894163968 @default.
- W2079221635 hasRelatedWork W2961085424 @default.
- W2079221635 hasRelatedWork W3094370402 @default.
- W2079221635 hasRelatedWork W3192727433 @default.
- W2079221635 isParatext "false" @default.
- W2079221635 isRetracted "false" @default.
- W2079221635 magId "2079221635" @default.
- W2079221635 workType "article" @default.