Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079238422> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2079238422 abstract "We construct a (mod-I) Spanier-Whitehead dual for the etale homotopy type of any geometrically unibranched and projective variety over an algebraically closed field of arbitrary characteristic. The Thom space of the normal bundle to imbedding any compact complex manifold in a large sphere as a real submanifold provides a Spanier-Whitehead dual for the disjoint union of the manifold and a base point. Our construction generalises this to any characteristic. We also observe various consequences of the existence of a (mod-I) Spanier-Whitehead dual. Introduction. In this paper we establish the existence of a (mod-i) SpanierWhitehead dual for the etale homotopy type of any geometrically unibranched and projective variety over an algebraically closed field of arbitrary characteristic. This generalises the familiar construction of the Spanier-Whitehead dual for a compact complex manifold. In the forthcoming papers [J-2 and J-3] we make use of this to establish a Becker-Gottlieb type transfer for proper and smooth maps of smooth quasi-projective varieties. Recall that associated to every finite spectrum X there exists another spectrum, denoted DX, and called the Spanier-Whitehead dual of X, which is characterised by the following property. Let EO denote the sphere spectrum, while E denotes any arbitrary spectrum. Then there exists a map ,u: E* X A DX of spectra which induces isomorphisms [u]: h-q(X, E) -* hq(DX, E) and [T,p]: h-q(DX, E) -* hq(X, E) for all q. Here r is the map interchanging the two factors X and DX while h* ( , E) (h* ( , E)) is the generalised homology (generalised cohomology, respectively) with respect to the spectrum E. (See [Sw, pp. 321-335] for a general reference on the familiar notion of Spanier-Whitehead duality in topology.) If X happens to be the suspension spectrum associated to a compact closed real manifold M, there exists an explicit geometric construction of its SpanierWhitehead dual. If a is the normal bundle to imbedding M in a large sphere as a smooth closed submanifold, then a suitable desuspension of the Thom space of this bundle forms a Spanier-Whitehead dual for M+. We observe that this construction therefore provides a Spanier-Whitehead dual for any compact complex manifold, by merely forgetting its complex structure. This construction is generalised here for projective and geometrically unibranched varieties over any algebraically closed field. Received by the editors November 14, 1984 and, in revised form, June 23, 1985. 1980 Mathematics Subject Classification. Primary 14F35; Secondary 14F20, 55P25, 55P42, 55N20. (@)1986 American Mathematical Society 0002-9947/86 $1.00 + $.25 per page" @default.
- W2079238422 created "2016-06-24" @default.
- W2079238422 creator A5042124856 @default.
- W2079238422 date "1986-01-01" @default.
- W2079238422 modified "2023-09-24" @default.
- W2079238422 title "Spanier-Whitehead duality in étale homotopy" @default.
- W2079238422 cites W1482209887 @default.
- W2079238422 cites W1485740749 @default.
- W2079238422 cites W1967306256 @default.
- W2079238422 cites W1987649400 @default.
- W2079238422 cites W2008020084 @default.
- W2079238422 cites W2008750675 @default.
- W2079238422 cites W2015077931 @default.
- W2079238422 cites W2052296815 @default.
- W2079238422 cites W2058619990 @default.
- W2079238422 cites W2071196613 @default.
- W2079238422 cites W2312715578 @default.
- W2079238422 cites W2320338015 @default.
- W2079238422 cites W2530550603 @default.
- W2079238422 cites W2560638896 @default.
- W2079238422 cites W641742619 @default.
- W2079238422 doi "https://doi.org/10.1090/s0002-9947-1986-0837804-4" @default.
- W2079238422 hasPublicationYear "1986" @default.
- W2079238422 type Work @default.
- W2079238422 sameAs 2079238422 @default.
- W2079238422 citedByCount "0" @default.
- W2079238422 crossrefType "journal-article" @default.
- W2079238422 hasAuthorship W2079238422A5042124856 @default.
- W2079238422 hasBestOaLocation W20792384221 @default.
- W2079238422 hasConcept C105795698 @default.
- W2079238422 hasConcept C114614502 @default.
- W2079238422 hasConcept C121332964 @default.
- W2079238422 hasConcept C136197465 @default.
- W2079238422 hasConcept C151300846 @default.
- W2079238422 hasConcept C156778621 @default.
- W2079238422 hasConcept C167204820 @default.
- W2079238422 hasConcept C18903297 @default.
- W2079238422 hasConcept C202444582 @default.
- W2079238422 hasConcept C203701370 @default.
- W2079238422 hasConcept C2777299769 @default.
- W2079238422 hasConcept C2778023678 @default.
- W2079238422 hasConcept C33923547 @default.
- W2079238422 hasConcept C5961521 @default.
- W2079238422 hasConcept C62139920 @default.
- W2079238422 hasConcept C62520636 @default.
- W2079238422 hasConcept C7655956 @default.
- W2079238422 hasConcept C86803240 @default.
- W2079238422 hasConcept C9652623 @default.
- W2079238422 hasConceptScore W2079238422C105795698 @default.
- W2079238422 hasConceptScore W2079238422C114614502 @default.
- W2079238422 hasConceptScore W2079238422C121332964 @default.
- W2079238422 hasConceptScore W2079238422C136197465 @default.
- W2079238422 hasConceptScore W2079238422C151300846 @default.
- W2079238422 hasConceptScore W2079238422C156778621 @default.
- W2079238422 hasConceptScore W2079238422C167204820 @default.
- W2079238422 hasConceptScore W2079238422C18903297 @default.
- W2079238422 hasConceptScore W2079238422C202444582 @default.
- W2079238422 hasConceptScore W2079238422C203701370 @default.
- W2079238422 hasConceptScore W2079238422C2777299769 @default.
- W2079238422 hasConceptScore W2079238422C2778023678 @default.
- W2079238422 hasConceptScore W2079238422C33923547 @default.
- W2079238422 hasConceptScore W2079238422C5961521 @default.
- W2079238422 hasConceptScore W2079238422C62139920 @default.
- W2079238422 hasConceptScore W2079238422C62520636 @default.
- W2079238422 hasConceptScore W2079238422C7655956 @default.
- W2079238422 hasConceptScore W2079238422C86803240 @default.
- W2079238422 hasConceptScore W2079238422C9652623 @default.
- W2079238422 hasLocation W20792384221 @default.
- W2079238422 hasOpenAccess W2079238422 @default.
- W2079238422 hasPrimaryLocation W20792384221 @default.
- W2079238422 hasRelatedWork W1510100584 @default.
- W2079238422 hasRelatedWork W1805421763 @default.
- W2079238422 hasRelatedWork W1974839203 @default.
- W2079238422 hasRelatedWork W1978245558 @default.
- W2079238422 hasRelatedWork W1986285963 @default.
- W2079238422 hasRelatedWork W1996744189 @default.
- W2079238422 hasRelatedWork W2005863260 @default.
- W2079238422 hasRelatedWork W2009680395 @default.
- W2079238422 hasRelatedWork W2071915501 @default.
- W2079238422 hasRelatedWork W2081866058 @default.
- W2079238422 hasRelatedWork W2142850903 @default.
- W2079238422 hasRelatedWork W2144219782 @default.
- W2079238422 hasRelatedWork W2145970432 @default.
- W2079238422 hasRelatedWork W2149055300 @default.
- W2079238422 hasRelatedWork W2325223994 @default.
- W2079238422 hasRelatedWork W2339409376 @default.
- W2079238422 hasRelatedWork W2547868065 @default.
- W2079238422 hasRelatedWork W3006272829 @default.
- W2079238422 hasRelatedWork W3105440946 @default.
- W2079238422 hasRelatedWork W3109012506 @default.
- W2079238422 isParatext "false" @default.
- W2079238422 isRetracted "false" @default.
- W2079238422 magId "2079238422" @default.
- W2079238422 workType "article" @default.