Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079238924> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2079238924 abstract "Purpose: Pencil beam algorithms are commonly used for proton therapy dose calculations. Szymanowski and Oelfke [“Two‐dimensional pencil beam scaling: An improved proton dose algorithm for heterogeneous media,” Phys. Med. Biol. 47, – (2002) ] developed a two‐dimensional (2D) scaling algorithm which accurately models the radial pencil beam width as a function of depth in heterogeneous slab geometries using a scaled expression for the radial kernel width in water as a function of depth and kinetic energy. However, an assumption made in the derivation of the technique limits its range of validity to cases where the input expression for the radial kernel width in water is derived from a local scattering power model. The goal of this work is to derive a generalized form of 2D pencil beam scaling that is independent of the scattering power model and appropriate for use with any expression for the radial kernel width in water as a function of depth. Methods: Using Fermi‐Eyges transport theory, the authors derive an expression for the radial pencil beam width in heterogeneous slab geometries which is independent of the proton scattering power and related quantities. The authors then perform test calculations in homogeneous and heterogeneous slab phantoms using both the original 2D scaling model and the new model with expressions for the radial kernel width in water computed from both local and nonlocal scattering power models, as well as a nonlocal parameterization of Molière scattering theory. In addition to kernel width calculations, dose calculations are also performed for a narrow Gaussian proton beam. Results: Pencil beam width calculations indicate that both 2D scaling formalisms perform well when the radial kernel width in water is derived from a local scattering power model. Computing the radial kernel width from a nonlocal scattering model results in the local 2D scaling formula under‐predicting the pencil beam width by as much as 1.4 mm (21%) at the depth of the Bragg peak for a 220 MeV proton beam in homogeneous water. This translates into a 32% dose discrepancy for a 5 mm Gaussian proton beam. Similar trends were observed for calculations made in heterogeneous slab phantoms where it was also noted that errors tend to increase with greater beam penetration. The generalized 2D scaling model performs well in all situations, with a maximum dose error of 0.3% at the Bragg peak in a heterogeneous phantom containing 3 cm of hard bone. Conclusions: The authors have derived a generalized form of 2D pencil beam scaling which is independent of the proton scattering power model and robust to the functional form of the radial kernel width in water used for the calculations. Sample calculations made with this model show excellent agreement with expected values in both homogeneous water and heterogeneous phantoms." @default.
- W2079238924 created "2016-06-24" @default.
- W2079238924 creator A5023209696 @default.
- W2079238924 creator A5060545727 @default.
- W2079238924 creator A5066069474 @default.
- W2079238924 creator A5085342186 @default.
- W2079238924 creator A5086826923 @default.
- W2079238924 date "2013-05-20" @default.
- W2079238924 modified "2023-10-07" @default.
- W2079238924 title "A generalized 2D pencil beam scaling algorithm for proton dose calculation in heterogeneous slab geometries" @default.
- W2079238924 cites W1969217285 @default.
- W2079238924 cites W1973074945 @default.
- W2079238924 cites W1990266390 @default.
- W2079238924 cites W2000858817 @default.
- W2079238924 cites W2004156023 @default.
- W2079238924 cites W2006418027 @default.
- W2079238924 cites W2034385023 @default.
- W2079238924 cites W2048692002 @default.
- W2079238924 cites W2054202206 @default.
- W2079238924 cites W2061664500 @default.
- W2079238924 cites W2062740540 @default.
- W2079238924 cites W2099104461 @default.
- W2079238924 cites W2121375567 @default.
- W2079238924 cites W2163218852 @default.
- W2079238924 cites W3121548678 @default.
- W2079238924 doi "https://doi.org/10.1118/1.4804055" @default.
- W2079238924 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3676383" @default.
- W2079238924 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23718585" @default.
- W2079238924 hasPublicationYear "2013" @default.
- W2079238924 type Work @default.
- W2079238924 sameAs 2079238924 @default.
- W2079238924 citedByCount "10" @default.
- W2079238924 countsByYear W20792389242013 @default.
- W2079238924 countsByYear W20792389242015 @default.
- W2079238924 countsByYear W20792389242016 @default.
- W2079238924 countsByYear W20792389242019 @default.
- W2079238924 countsByYear W20792389242021 @default.
- W2079238924 countsByYear W20792389242022 @default.
- W2079238924 countsByYear W20792389242023 @default.
- W2079238924 crossrefType "journal-article" @default.
- W2079238924 hasAuthorship W2079238924A5023209696 @default.
- W2079238924 hasAuthorship W2079238924A5060545727 @default.
- W2079238924 hasAuthorship W2079238924A5066069474 @default.
- W2079238924 hasAuthorship W2079238924A5085342186 @default.
- W2079238924 hasAuthorship W2079238924A5086826923 @default.
- W2079238924 hasBestOaLocation W20792389242 @default.
- W2079238924 hasConcept C113740112 @default.
- W2079238924 hasConcept C114614502 @default.
- W2079238924 hasConcept C120665830 @default.
- W2079238924 hasConcept C121332964 @default.
- W2079238924 hasConcept C134306372 @default.
- W2079238924 hasConcept C134949993 @default.
- W2079238924 hasConcept C191486275 @default.
- W2079238924 hasConcept C2524010 @default.
- W2079238924 hasConcept C30475298 @default.
- W2079238924 hasConcept C33923547 @default.
- W2079238924 hasConcept C74193536 @default.
- W2079238924 hasConcept C8058405 @default.
- W2079238924 hasConcept C99844830 @default.
- W2079238924 hasConceptScore W2079238924C113740112 @default.
- W2079238924 hasConceptScore W2079238924C114614502 @default.
- W2079238924 hasConceptScore W2079238924C120665830 @default.
- W2079238924 hasConceptScore W2079238924C121332964 @default.
- W2079238924 hasConceptScore W2079238924C134306372 @default.
- W2079238924 hasConceptScore W2079238924C134949993 @default.
- W2079238924 hasConceptScore W2079238924C191486275 @default.
- W2079238924 hasConceptScore W2079238924C2524010 @default.
- W2079238924 hasConceptScore W2079238924C30475298 @default.
- W2079238924 hasConceptScore W2079238924C33923547 @default.
- W2079238924 hasConceptScore W2079238924C74193536 @default.
- W2079238924 hasConceptScore W2079238924C8058405 @default.
- W2079238924 hasConceptScore W2079238924C99844830 @default.
- W2079238924 hasFunder F4320332161 @default.
- W2079238924 hasIssue "6Part1" @default.
- W2079238924 hasLocation W20792389241 @default.
- W2079238924 hasLocation W20792389242 @default.
- W2079238924 hasLocation W20792389243 @default.
- W2079238924 hasLocation W20792389244 @default.
- W2079238924 hasOpenAccess W2079238924 @default.
- W2079238924 hasPrimaryLocation W20792389241 @default.
- W2079238924 hasRelatedWork W2029251104 @default.
- W2079238924 hasRelatedWork W2262824164 @default.
- W2079238924 hasRelatedWork W2349064774 @default.
- W2079238924 hasRelatedWork W2352380072 @default.
- W2079238924 hasRelatedWork W2352678454 @default.
- W2079238924 hasRelatedWork W2370986896 @default.
- W2079238924 hasRelatedWork W2381438901 @default.
- W2079238924 hasRelatedWork W2383095243 @default.
- W2079238924 hasRelatedWork W2515467626 @default.
- W2079238924 hasRelatedWork W3196517001 @default.
- W2079238924 hasVolume "40" @default.
- W2079238924 isParatext "false" @default.
- W2079238924 isRetracted "false" @default.
- W2079238924 magId "2079238924" @default.
- W2079238924 workType "article" @default.