Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079259258> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W2079259258 endingPage "58" @default.
- W2079259258 startingPage "41" @default.
- W2079259258 abstract "The electrophoretic motion of an arbitrary prolate body of revolution perpendicular to an infinite conducting planar wall is investigated by a combined analytical–numerical method. The electric field is exerted normal to the conducting planar wall and parallel to the axis of revolution of the particle. The governing equations and boundary conditions are obtained under the assumption of electric double layer thin compared to the local particle curvature radius and the spacing between the particle and the boundary. The axisymmetrical electrostatic and hydrodynamic equations are solved by the method of distribution of singularities along a certain line segment on the axis of revolution inside the particle. The analytical expressions for fundamental singularities both of electrostatic and hydrodynamic equations in the presence of the infinite planar wall are derived. Employing a piecewise parabolic approximation for the density function and applying the boundary collocation method to satisfy the boundary conditions on the surface of the particle, a system of linear algebraic equations is obtained which can be solved by matrix reduction technique. Solutions for the electrophoretic velocity of the colloidal prolate spheroid are presented for various values of a/b and a/d , where a and b are the major and minor axes of the particle respectively and d is the distance between the centre and the wall. Numerical tests show that convergence to at least four digits can be achieved. For the limiting cases of a = b or d → ∞, our results agree quite well with the exact solutions of electrophoresis of a sphere moving perpendicularly to an infinite planar wall or of a prolate spheroid in an unbounded fluid. As expected, owing to the effect of the wall, the electrophoretic mobility of the particle decreases monotonically for a given spheroid as it gets closer to the wall. Another important feature is that the wall effect on electrophoresis will reduce with the increase of slenderness ratio of the prolate spheroid at the same value of a/d . The boundary effect on the particle mobility and flow pattern in electrophoresis differ significantly from those of the corresponding sedimentation problem and the wall effect on the electrophoresis is much weaker than that on the sedimentation. In order to demonstrate the generality of the proposed method, the convergent results for prolate Cassini ovals are also given in the present paper." @default.
- W2079259258 created "2016-06-24" @default.
- W2079259258 creator A5036239822 @default.
- W2079259258 creator A5079231231 @default.
- W2079259258 date "1994-04-10" @default.
- W2079259258 modified "2023-10-17" @default.
- W2079259258 title "Electrophoretic motion of an arbitrary prolate body of revolution toward an infinite conducting wall" @default.
- W2079259258 cites W1489826927 @default.
- W2079259258 cites W1969287097 @default.
- W2079259258 cites W1976906784 @default.
- W2079259258 cites W1982633081 @default.
- W2079259258 cites W1990179159 @default.
- W2079259258 cites W2028951181 @default.
- W2079259258 cites W2034247557 @default.
- W2079259258 cites W2056555072 @default.
- W2079259258 cites W2096469358 @default.
- W2079259258 cites W2110925364 @default.
- W2079259258 cites W2132087801 @default.
- W2079259258 cites W2134174745 @default.
- W2079259258 cites W2319653445 @default.
- W2079259258 cites W2996789916 @default.
- W2079259258 doi "https://doi.org/10.1017/s0022112094000571" @default.
- W2079259258 hasPublicationYear "1994" @default.
- W2079259258 type Work @default.
- W2079259258 sameAs 2079259258 @default.
- W2079259258 citedByCount "26" @default.
- W2079259258 countsByYear W20792592582012 @default.
- W2079259258 countsByYear W20792592582013 @default.
- W2079259258 countsByYear W20792592582019 @default.
- W2079259258 crossrefType "journal-article" @default.
- W2079259258 hasAuthorship W2079259258A5036239822 @default.
- W2079259258 hasAuthorship W2079259258A5079231231 @default.
- W2079259258 hasConcept C121332964 @default.
- W2079259258 hasConcept C134306372 @default.
- W2079259258 hasConcept C195065555 @default.
- W2079259258 hasConcept C2524010 @default.
- W2079259258 hasConcept C33923547 @default.
- W2079259258 hasConcept C62354387 @default.
- W2079259258 hasConcept C74650414 @default.
- W2079259258 hasConceptScore W2079259258C121332964 @default.
- W2079259258 hasConceptScore W2079259258C134306372 @default.
- W2079259258 hasConceptScore W2079259258C195065555 @default.
- W2079259258 hasConceptScore W2079259258C2524010 @default.
- W2079259258 hasConceptScore W2079259258C33923547 @default.
- W2079259258 hasConceptScore W2079259258C62354387 @default.
- W2079259258 hasConceptScore W2079259258C74650414 @default.
- W2079259258 hasLocation W20792592581 @default.
- W2079259258 hasOpenAccess W2079259258 @default.
- W2079259258 hasPrimaryLocation W20792592581 @default.
- W2079259258 hasRelatedWork W2000264604 @default.
- W2079259258 hasRelatedWork W2086826659 @default.
- W2079259258 hasRelatedWork W2101799270 @default.
- W2079259258 hasRelatedWork W2102825499 @default.
- W2079259258 hasRelatedWork W2330614733 @default.
- W2079259258 hasRelatedWork W2949527857 @default.
- W2079259258 hasRelatedWork W2950996796 @default.
- W2079259258 hasRelatedWork W4200631027 @default.
- W2079259258 hasRelatedWork W4226170179 @default.
- W2079259258 hasRelatedWork W4300185397 @default.
- W2079259258 hasVolume "264" @default.
- W2079259258 isParatext "false" @default.
- W2079259258 isRetracted "false" @default.
- W2079259258 magId "2079259258" @default.
- W2079259258 workType "article" @default.