Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079309557> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2079309557 endingPage "269" @default.
- W2079309557 startingPage "243" @default.
- W2079309557 abstract "This paper explores a memory-based approach to robot learning, using memory-based neural networks to learn models of the task to be performed. Steinbuch and Taylor presented neural network designs to explicitly store training data and do nearest neighbor lookup in the early 1960s. In this paper their nearest neighbor network is augmented with a local model network, which fits a local model to a set of nearest neighbors. This network design is equivalent to a statistical approach known as locally weighted regression, in which a local model is formed to answer each query, using a weighted regression in which nearby points (similar experiences) are weighted more than distant points (less relevant experiences). We illustrate this approach by describing how it has been used to enable a robot to learn a difficult juggling task." @default.
- W2079309557 created "2016-06-24" @default.
- W2079309557 creator A5029642293 @default.
- W2079309557 creator A5055330939 @default.
- W2079309557 date "1995-12-01" @default.
- W2079309557 modified "2023-09-23" @default.
- W2079309557 title "Memory-based neural networks for robot learning" @default.
- W2079309557 cites W1502930520 @default.
- W2079309557 cites W1967678129 @default.
- W2079309557 cites W1988744163 @default.
- W2079309557 cites W1993740947 @default.
- W2079309557 cites W2004131797 @default.
- W2079309557 cites W2013815893 @default.
- W2079309557 cites W2020396804 @default.
- W2079309557 cites W2024585065 @default.
- W2079309557 cites W2024668293 @default.
- W2079309557 cites W2038216347 @default.
- W2079309557 cites W2038845890 @default.
- W2079309557 cites W2038921775 @default.
- W2079309557 cites W2041439815 @default.
- W2079309557 cites W2044523229 @default.
- W2079309557 cites W2053039612 @default.
- W2079309557 cites W2059507684 @default.
- W2079309557 cites W2059885445 @default.
- W2079309557 cites W2081070226 @default.
- W2079309557 cites W2089367368 @default.
- W2079309557 cites W2090873490 @default.
- W2079309557 cites W2103952630 @default.
- W2079309557 cites W2127946960 @default.
- W2079309557 cites W2149723649 @default.
- W2079309557 cites W2150712551 @default.
- W2079309557 cites W4211128390 @default.
- W2079309557 cites W4234788519 @default.
- W2079309557 cites W4237737483 @default.
- W2079309557 cites W4240778903 @default.
- W2079309557 cites W4253016408 @default.
- W2079309557 doi "https://doi.org/10.1016/0925-2312(95)00033-6" @default.
- W2079309557 hasPublicationYear "1995" @default.
- W2079309557 type Work @default.
- W2079309557 sameAs 2079309557 @default.
- W2079309557 citedByCount "55" @default.
- W2079309557 countsByYear W20793095572014 @default.
- W2079309557 countsByYear W20793095572015 @default.
- W2079309557 countsByYear W20793095572016 @default.
- W2079309557 countsByYear W20793095572017 @default.
- W2079309557 countsByYear W20793095572018 @default.
- W2079309557 countsByYear W20793095572019 @default.
- W2079309557 countsByYear W20793095572020 @default.
- W2079309557 countsByYear W20793095572021 @default.
- W2079309557 countsByYear W20793095572022 @default.
- W2079309557 crossrefType "journal-article" @default.
- W2079309557 hasAuthorship W2079309557A5029642293 @default.
- W2079309557 hasAuthorship W2079309557A5055330939 @default.
- W2079309557 hasConcept C113238511 @default.
- W2079309557 hasConcept C119857082 @default.
- W2079309557 hasConcept C124101348 @default.
- W2079309557 hasConcept C154945302 @default.
- W2079309557 hasConcept C162324750 @default.
- W2079309557 hasConcept C177264268 @default.
- W2079309557 hasConcept C187736073 @default.
- W2079309557 hasConcept C199360897 @default.
- W2079309557 hasConcept C2780451532 @default.
- W2079309557 hasConcept C41008148 @default.
- W2079309557 hasConcept C50644808 @default.
- W2079309557 hasConcept C90509273 @default.
- W2079309557 hasConceptScore W2079309557C113238511 @default.
- W2079309557 hasConceptScore W2079309557C119857082 @default.
- W2079309557 hasConceptScore W2079309557C124101348 @default.
- W2079309557 hasConceptScore W2079309557C154945302 @default.
- W2079309557 hasConceptScore W2079309557C162324750 @default.
- W2079309557 hasConceptScore W2079309557C177264268 @default.
- W2079309557 hasConceptScore W2079309557C187736073 @default.
- W2079309557 hasConceptScore W2079309557C199360897 @default.
- W2079309557 hasConceptScore W2079309557C2780451532 @default.
- W2079309557 hasConceptScore W2079309557C41008148 @default.
- W2079309557 hasConceptScore W2079309557C50644808 @default.
- W2079309557 hasConceptScore W2079309557C90509273 @default.
- W2079309557 hasIssue "3" @default.
- W2079309557 hasLocation W20793095571 @default.
- W2079309557 hasOpenAccess W2079309557 @default.
- W2079309557 hasPrimaryLocation W20793095571 @default.
- W2079309557 hasRelatedWork W1509467138 @default.
- W2079309557 hasRelatedWork W1526424163 @default.
- W2079309557 hasRelatedWork W1961973183 @default.
- W2079309557 hasRelatedWork W2187619504 @default.
- W2079309557 hasRelatedWork W2782789473 @default.
- W2079309557 hasRelatedWork W3116896278 @default.
- W2079309557 hasRelatedWork W3134765885 @default.
- W2079309557 hasRelatedWork W3204641204 @default.
- W2079309557 hasRelatedWork W4226078078 @default.
- W2079309557 hasRelatedWork W1629725936 @default.
- W2079309557 hasVolume "9" @default.
- W2079309557 isParatext "false" @default.
- W2079309557 isRetracted "false" @default.
- W2079309557 magId "2079309557" @default.
- W2079309557 workType "article" @default.