Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079333301> ?p ?o ?g. }
- W2079333301 endingPage "327" @default.
- W2079333301 startingPage "311" @default.
- W2079333301 abstract "In this paper, we apply the self-generating radial basis function network (SGRBF) to the dimension analysis of the nonlinear dynamical systems including chaotic time series. Firstly, we formulate a nonlinear time series identification problem with a nonlinear autoregressive moving average (NARMAX) model. Secondly, we propose an identification algorithm using SGRBF, which is regarded as both a three-layer network or a fuzzy model of class C∞ with Gaussian membership function. We apply this method to the estimation of embedding dimension for chaotic time series, since the embedding dimension plays an essential role for the identification and the prediction of nonlinear dynamical systems including chaos. In this estimation method, identification problems with gradually increasing embedding dimension are solved, and the identified result is used for computing correlation coefficients between the predicted time series and the observed one. We apply this method to the embedding dimension estimation of a Henon map and a chaotic pulsation time series in a finger's capillary vessels." @default.
- W2079333301 created "2016-06-24" @default.
- W2079333301 creator A5001910707 @default.
- W2079333301 creator A5024875554 @default.
- W2079333301 creator A5042063209 @default.
- W2079333301 creator A5080220701 @default.
- W2079333301 date "1995-05-01" @default.
- W2079333301 modified "2023-10-18" @default.
- W2079333301 title "Embedding dimension estimation of chaotic time series using self-generating radial basis function network" @default.
- W2079333301 cites W1524100745 @default.
- W2079333301 cites W1542420084 @default.
- W2079333301 cites W1548502347 @default.
- W2079333301 cites W1549386224 @default.
- W2079333301 cites W1572030142 @default.
- W2079333301 cites W1684995325 @default.
- W2079333301 cites W1966617449 @default.
- W2079333301 cites W1966762086 @default.
- W2079333301 cites W1974605885 @default.
- W2079333301 cites W1975100741 @default.
- W2079333301 cites W1984391316 @default.
- W2079333301 cites W1998367480 @default.
- W2079333301 cites W1998727969 @default.
- W2079333301 cites W1999329968 @default.
- W2079333301 cites W2005740351 @default.
- W2079333301 cites W2006918773 @default.
- W2079333301 cites W2007065794 @default.
- W2079333301 cites W2007700211 @default.
- W2079333301 cites W2034099719 @default.
- W2079333301 cites W2035740143 @default.
- W2079333301 cites W2040704490 @default.
- W2079333301 cites W2054658115 @default.
- W2079333301 cites W2056651346 @default.
- W2079333301 cites W2066366061 @default.
- W2079333301 cites W2072773743 @default.
- W2079333301 cites W2087627382 @default.
- W2079333301 cites W2102729105 @default.
- W2079333301 cites W2120953452 @default.
- W2079333301 cites W2125566231 @default.
- W2079333301 cites W2130360924 @default.
- W2079333301 cites W2137983211 @default.
- W2079333301 cites W2141904190 @default.
- W2079333301 cites W2147060792 @default.
- W2079333301 cites W2155399784 @default.
- W2079333301 cites W2158038039 @default.
- W2079333301 cites W2164384503 @default.
- W2079333301 cites W2166116275 @default.
- W2079333301 cites W2171277043 @default.
- W2079333301 cites W2276102453 @default.
- W2079333301 cites W2414376918 @default.
- W2079333301 cites W2766736793 @default.
- W2079333301 cites W2896916590 @default.
- W2079333301 cites W3138265894 @default.
- W2079333301 cites W3146803896 @default.
- W2079333301 cites W613224089 @default.
- W2079333301 cites W93559407 @default.
- W2079333301 cites W94523489 @default.
- W2079333301 doi "https://doi.org/10.1016/0165-0114(94)00279-g" @default.
- W2079333301 hasPublicationYear "1995" @default.
- W2079333301 type Work @default.
- W2079333301 sameAs 2079333301 @default.
- W2079333301 citedByCount "11" @default.
- W2079333301 countsByYear W20793333012012 @default.
- W2079333301 countsByYear W20793333012013 @default.
- W2079333301 countsByYear W20793333012016 @default.
- W2079333301 crossrefType "journal-article" @default.
- W2079333301 hasAuthorship W2079333301A5001910707 @default.
- W2079333301 hasAuthorship W2079333301A5024875554 @default.
- W2079333301 hasAuthorship W2079333301A5042063209 @default.
- W2079333301 hasAuthorship W2079333301A5080220701 @default.
- W2079333301 hasConcept C105795698 @default.
- W2079333301 hasConcept C110601934 @default.
- W2079333301 hasConcept C11413529 @default.
- W2079333301 hasConcept C121332964 @default.
- W2079333301 hasConcept C126255220 @default.
- W2079333301 hasConcept C134306372 @default.
- W2079333301 hasConcept C143724316 @default.
- W2079333301 hasConcept C151406439 @default.
- W2079333301 hasConcept C151730666 @default.
- W2079333301 hasConcept C154945302 @default.
- W2079333301 hasConcept C158622935 @default.
- W2079333301 hasConcept C202444582 @default.
- W2079333301 hasConcept C26546657 @default.
- W2079333301 hasConcept C2777052490 @default.
- W2079333301 hasConcept C2781402108 @default.
- W2079333301 hasConcept C28826006 @default.
- W2079333301 hasConcept C33676613 @default.
- W2079333301 hasConcept C33923547 @default.
- W2079333301 hasConcept C40636538 @default.
- W2079333301 hasConcept C41008148 @default.
- W2079333301 hasConcept C41608201 @default.
- W2079333301 hasConcept C62520636 @default.
- W2079333301 hasConcept C86803240 @default.
- W2079333301 hasConceptScore W2079333301C105795698 @default.
- W2079333301 hasConceptScore W2079333301C110601934 @default.
- W2079333301 hasConceptScore W2079333301C11413529 @default.
- W2079333301 hasConceptScore W2079333301C121332964 @default.
- W2079333301 hasConceptScore W2079333301C126255220 @default.
- W2079333301 hasConceptScore W2079333301C134306372 @default.