Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079344209> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W2079344209 endingPage "472" @default.
- W2079344209 startingPage "464" @default.
- W2079344209 abstract "Abstract Illuminance measurement do not make up a part of routine measurements in meteorological stations in Brazil, therefore, they are very rare. This information is important for evaluating the potential contribution of natural illumination in commercial buildings, which would significantly reduce the consumption of electric energy that is used for artificial illumination and refrigeration systems. To face this lack of information, different models known as luminous efficacy were created, which made possible the estimation of illuminance in regions where there only exists information on solar irradiation. In general, they are statistical models that empirically correlate the relationship between illuminance and solar irradiation with other meteorological variables and/or sky conditions. In this work, an estimation of hourly luminous efficacy was made by means of several statistical models and by the MLP (multilayer perceptron) artificial neural networks (ANN). The hourly global luminous efficacy was estimated by considering a group of physical variables from the same locality and that were collected in a simultaneous way. The data input of the ANN was the following: dew temperature, precipitable water, sky brilliance index, clearness index of Perez and clearness index. The results were compared with the statistical models of Perez et al. [Perez R, Seals R, Michalsky J. All-weather model for sky luminance distribuition-preliminary configuration and validation. Solar Energy 1993;50(3):235–45], and Robledo [Robledo L, Soler A. Luminous efficacy of direct solar radiation for all sky types. Energy Conversion & Management 2000;41:1769–79], adjusted with local coefficients. The artificial neural network model shows a statistical performance slightly better than these models with RMSE of 5.8% for the city of Recife and 3.6% for Pesqueira." @default.
- W2079344209 created "2016-06-24" @default.
- W2079344209 creator A5009894305 @default.
- W2079344209 creator A5026589589 @default.
- W2079344209 date "2012-12-01" @default.
- W2079344209 modified "2023-09-26" @default.
- W2079344209 title "Measuring and modelling illuminance in the semi-arid Northeast of Brazil" @default.
- W2079344209 cites W12537638 @default.
- W2079344209 cites W1978946773 @default.
- W2079344209 cites W2003179563 @default.
- W2079344209 cites W2005107454 @default.
- W2079344209 cites W2029200234 @default.
- W2079344209 cites W2031257914 @default.
- W2079344209 cites W2032248327 @default.
- W2079344209 cites W2045792861 @default.
- W2079344209 cites W2046309491 @default.
- W2079344209 cites W2050344142 @default.
- W2079344209 cites W2061048804 @default.
- W2079344209 cites W2074678414 @default.
- W2079344209 cites W2075985587 @default.
- W2079344209 cites W2102453704 @default.
- W2079344209 cites W2150203691 @default.
- W2079344209 cites W2756582184 @default.
- W2079344209 doi "https://doi.org/10.1016/j.renene.2012.05.023" @default.
- W2079344209 hasPublicationYear "2012" @default.
- W2079344209 type Work @default.
- W2079344209 sameAs 2079344209 @default.
- W2079344209 citedByCount "7" @default.
- W2079344209 countsByYear W20793442092013 @default.
- W2079344209 countsByYear W20793442092015 @default.
- W2079344209 countsByYear W20793442092016 @default.
- W2079344209 countsByYear W20793442092018 @default.
- W2079344209 countsByYear W20793442092020 @default.
- W2079344209 countsByYear W20793442092022 @default.
- W2079344209 crossrefType "journal-article" @default.
- W2079344209 hasAuthorship W2079344209A5009894305 @default.
- W2079344209 hasAuthorship W2079344209A5026589589 @default.
- W2079344209 hasConcept C120665830 @default.
- W2079344209 hasConcept C121332964 @default.
- W2079344209 hasConcept C127313418 @default.
- W2079344209 hasConcept C150772632 @default.
- W2079344209 hasConcept C151730666 @default.
- W2079344209 hasConcept C205649164 @default.
- W2079344209 hasConcept C36365805 @default.
- W2079344209 hasConcept C39432304 @default.
- W2079344209 hasConcept C62649853 @default.
- W2079344209 hasConceptScore W2079344209C120665830 @default.
- W2079344209 hasConceptScore W2079344209C121332964 @default.
- W2079344209 hasConceptScore W2079344209C127313418 @default.
- W2079344209 hasConceptScore W2079344209C150772632 @default.
- W2079344209 hasConceptScore W2079344209C151730666 @default.
- W2079344209 hasConceptScore W2079344209C205649164 @default.
- W2079344209 hasConceptScore W2079344209C36365805 @default.
- W2079344209 hasConceptScore W2079344209C39432304 @default.
- W2079344209 hasConceptScore W2079344209C62649853 @default.
- W2079344209 hasLocation W20793442091 @default.
- W2079344209 hasOpenAccess W2079344209 @default.
- W2079344209 hasPrimaryLocation W20793442091 @default.
- W2079344209 hasRelatedWork W157670826 @default.
- W2079344209 hasRelatedWork W1975591846 @default.
- W2079344209 hasRelatedWork W2020215125 @default.
- W2079344209 hasRelatedWork W2113223621 @default.
- W2079344209 hasRelatedWork W2137314351 @default.
- W2079344209 hasRelatedWork W2361150023 @default.
- W2079344209 hasRelatedWork W2393418545 @default.
- W2079344209 hasRelatedWork W2615906524 @default.
- W2079344209 hasRelatedWork W2899084033 @default.
- W2079344209 hasRelatedWork W3212252096 @default.
- W2079344209 hasVolume "48" @default.
- W2079344209 isParatext "false" @default.
- W2079344209 isRetracted "false" @default.
- W2079344209 magId "2079344209" @default.
- W2079344209 workType "article" @default.