Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079352458> ?p ?o ?g. }
- W2079352458 endingPage "309" @default.
- W2079352458 startingPage "287" @default.
- W2079352458 abstract "Summary Log-linear models are a classical tool for the analysis of contingency tables. In particular, the subclass of graphical log-linear models provides a general framework for modelling conditional independences. However, with the exception of special structures, marginal independence hypotheses cannot be accommodated by these traditional models. Focusing on binary variables, we present a model class that provides a framework for modelling marginal independences in contingency tables. The approach that is taken is graphical and draws on analogies with multivariate Gaussian models for marginal independence. For the graphical model representation we use bidirected graphs, which are in the tradition of path diagrams. We show how the models can be parameterized in a simple fashion, and how maximum likelihood estimation can be performed by using a version of the iterated conditional fitting algorithm. Finally we consider combining these models with symmetry restrictions." @default.
- W2079352458 created "2016-06-24" @default.
- W2079352458 creator A5037160280 @default.
- W2079352458 creator A5065757486 @default.
- W2079352458 date "2008-02-06" @default.
- W2079352458 modified "2023-10-18" @default.
- W2079352458 title "Binary Models for Marginal Independence" @default.
- W2079352458 cites W1494413412 @default.
- W2079352458 cites W1498857622 @default.
- W2079352458 cites W1649060349 @default.
- W2079352458 cites W1763728792 @default.
- W2079352458 cites W1805220623 @default.
- W2079352458 cites W1849082027 @default.
- W2079352458 cites W1964356176 @default.
- W2079352458 cites W1971424055 @default.
- W2079352458 cites W1987368804 @default.
- W2079352458 cites W1992452843 @default.
- W2079352458 cites W1994719642 @default.
- W2079352458 cites W1995423865 @default.
- W2079352458 cites W1996571336 @default.
- W2079352458 cites W2004064635 @default.
- W2079352458 cites W2018188386 @default.
- W2079352458 cites W2023518290 @default.
- W2079352458 cites W2025331966 @default.
- W2079352458 cites W2027996671 @default.
- W2079352458 cites W2035921540 @default.
- W2079352458 cites W2041282683 @default.
- W2079352458 cites W2041542605 @default.
- W2079352458 cites W2050015934 @default.
- W2079352458 cites W2055828672 @default.
- W2079352458 cites W2059298376 @default.
- W2079352458 cites W2070013518 @default.
- W2079352458 cites W2086331397 @default.
- W2079352458 cites W2099874950 @default.
- W2079352458 cites W2105392058 @default.
- W2079352458 cites W2116157460 @default.
- W2079352458 cites W2122819745 @default.
- W2079352458 cites W2135226867 @default.
- W2079352458 cites W2159799399 @default.
- W2079352458 cites W2326193781 @default.
- W2079352458 cites W4301861531 @default.
- W2079352458 doi "https://doi.org/10.1111/j.1467-9868.2007.00636.x" @default.
- W2079352458 hasPublicationYear "2008" @default.
- W2079352458 type Work @default.
- W2079352458 sameAs 2079352458 @default.
- W2079352458 citedByCount "72" @default.
- W2079352458 countsByYear W20793524582012 @default.
- W2079352458 countsByYear W20793524582013 @default.
- W2079352458 countsByYear W20793524582014 @default.
- W2079352458 countsByYear W20793524582015 @default.
- W2079352458 countsByYear W20793524582016 @default.
- W2079352458 countsByYear W20793524582017 @default.
- W2079352458 countsByYear W20793524582018 @default.
- W2079352458 countsByYear W20793524582019 @default.
- W2079352458 countsByYear W20793524582021 @default.
- W2079352458 countsByYear W20793524582022 @default.
- W2079352458 countsByYear W20793524582023 @default.
- W2079352458 crossrefType "journal-article" @default.
- W2079352458 hasAuthorship W2079352458A5037160280 @default.
- W2079352458 hasAuthorship W2079352458A5065757486 @default.
- W2079352458 hasBestOaLocation W20793524581 @default.
- W2079352458 hasConcept C105795698 @default.
- W2079352458 hasConcept C111472728 @default.
- W2079352458 hasConcept C11413529 @default.
- W2079352458 hasConcept C119857082 @default.
- W2079352458 hasConcept C134306372 @default.
- W2079352458 hasConcept C138885662 @default.
- W2079352458 hasConcept C140479938 @default.
- W2079352458 hasConcept C154945302 @default.
- W2079352458 hasConcept C155846161 @default.
- W2079352458 hasConcept C165464430 @default.
- W2079352458 hasConcept C17744445 @default.
- W2079352458 hasConcept C199539241 @default.
- W2079352458 hasConcept C2776359362 @default.
- W2079352458 hasConcept C2780586882 @default.
- W2079352458 hasConcept C33923547 @default.
- W2079352458 hasConcept C35651441 @default.
- W2079352458 hasConcept C41008148 @default.
- W2079352458 hasConcept C48372109 @default.
- W2079352458 hasConcept C79772020 @default.
- W2079352458 hasConcept C80444323 @default.
- W2079352458 hasConcept C91998498 @default.
- W2079352458 hasConcept C94375191 @default.
- W2079352458 hasConcept C94625758 @default.
- W2079352458 hasConceptScore W2079352458C105795698 @default.
- W2079352458 hasConceptScore W2079352458C111472728 @default.
- W2079352458 hasConceptScore W2079352458C11413529 @default.
- W2079352458 hasConceptScore W2079352458C119857082 @default.
- W2079352458 hasConceptScore W2079352458C134306372 @default.
- W2079352458 hasConceptScore W2079352458C138885662 @default.
- W2079352458 hasConceptScore W2079352458C140479938 @default.
- W2079352458 hasConceptScore W2079352458C154945302 @default.
- W2079352458 hasConceptScore W2079352458C155846161 @default.
- W2079352458 hasConceptScore W2079352458C165464430 @default.
- W2079352458 hasConceptScore W2079352458C17744445 @default.
- W2079352458 hasConceptScore W2079352458C199539241 @default.
- W2079352458 hasConceptScore W2079352458C2776359362 @default.
- W2079352458 hasConceptScore W2079352458C2780586882 @default.