Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079361657> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2079361657 endingPage "396" @default.
- W2079361657 startingPage "377" @default.
- W2079361657 abstract "Summary This paper compares analytically and empirically the frequentist and Bayesian measures of error in small area estimation. The model postulated is the nested error regression model which allows for random small area effects to represent the joint effect of small area characteristics that are not accounted for by the fixed regressor variables. When the variance components are known, then, under a uniform prior for the regression coefficients and normality of the error terms, the frequentist and the Bayesian approaches yield the same predictors and prediction mean-squared errors (MSEs) (defined accordingly). When the variance components are unknown, it is common practice to replace the unknown variances by sample estimates in the expressions for the optimal predictors, so that the resulting empirical predictors remain the same under the two approaches. The use of this paradigm requires, however, modifications to the expressions of the prediction MSE to account for the extra variability induced by the need to estimate the variance components. The main focus of this paper is to review and compare the modifications to prediction MSEs proposed in the literature under the two approaches, with special emphasis on the orders of the bias of the resulting approximations to the true MSEs. Some new approximations based on Monte Carlo simulation are also proposed and compared with the existing methods. The advantage of these approximations is their simplicity and generality. Finite sample frequentist properties of the various methods are explored by a simulation study. The main conclusions of this study are that the use of second-order bias corrections generally yields better results in terms of the bias of the MSE approximations and the coverage properties of confidence intervals for the small area means. The Bayesian methods are found to have good frequentist properties, but they can be inferior to the frequentist methods. The second-order approximations under both approaches have, however, larger variances than the corresponding first-order approximations which in most cases result in higher MSEs of the MSE approximations." @default.
- W2079361657 created "2016-06-24" @default.
- W2079361657 creator A5035100202 @default.
- W2079361657 creator A5049618089 @default.
- W2079361657 creator A5087286694 @default.
- W2079361657 date "1998-07-01" @default.
- W2079361657 modified "2023-10-03" @default.
- W2079361657 title "Bayesian <i>Versus</i> Frequentist Measures of Error in Small Area Estimation" @default.
- W2079361657 cites W1972294366 @default.
- W2079361657 cites W1983607152 @default.
- W2079361657 cites W1985262228 @default.
- W2079361657 cites W1996549107 @default.
- W2079361657 cites W1998572718 @default.
- W2079361657 cites W2018304737 @default.
- W2079361657 cites W2021737497 @default.
- W2079361657 cites W2030111109 @default.
- W2079361657 cites W2062913726 @default.
- W2079361657 cites W2094648385 @default.
- W2079361657 cites W2097188985 @default.
- W2079361657 cites W2168016523 @default.
- W2079361657 doi "https://doi.org/10.1111/1467-9868.00131" @default.
- W2079361657 hasPublicationYear "1998" @default.
- W2079361657 type Work @default.
- W2079361657 sameAs 2079361657 @default.
- W2079361657 citedByCount "54" @default.
- W2079361657 countsByYear W20793616572012 @default.
- W2079361657 countsByYear W20793616572013 @default.
- W2079361657 countsByYear W20793616572014 @default.
- W2079361657 countsByYear W20793616572015 @default.
- W2079361657 countsByYear W20793616572017 @default.
- W2079361657 countsByYear W20793616572018 @default.
- W2079361657 countsByYear W20793616572019 @default.
- W2079361657 countsByYear W20793616572020 @default.
- W2079361657 countsByYear W20793616572021 @default.
- W2079361657 crossrefType "journal-article" @default.
- W2079361657 hasAuthorship W2079361657A5035100202 @default.
- W2079361657 hasAuthorship W2079361657A5049618089 @default.
- W2079361657 hasAuthorship W2079361657A5087286694 @default.
- W2079361657 hasConcept C105795698 @default.
- W2079361657 hasConcept C107673813 @default.
- W2079361657 hasConcept C121955636 @default.
- W2079361657 hasConcept C129848803 @default.
- W2079361657 hasConcept C129963666 @default.
- W2079361657 hasConcept C139945424 @default.
- W2079361657 hasConcept C144133560 @default.
- W2079361657 hasConcept C149782125 @default.
- W2079361657 hasConcept C154945302 @default.
- W2079361657 hasConcept C160234255 @default.
- W2079361657 hasConcept C162376815 @default.
- W2079361657 hasConcept C185429906 @default.
- W2079361657 hasConcept C19499675 @default.
- W2079361657 hasConcept C196083921 @default.
- W2079361657 hasConcept C2776502983 @default.
- W2079361657 hasConcept C33923547 @default.
- W2079361657 hasConcept C41008148 @default.
- W2079361657 hasConcept C83546350 @default.
- W2079361657 hasConceptScore W2079361657C105795698 @default.
- W2079361657 hasConceptScore W2079361657C107673813 @default.
- W2079361657 hasConceptScore W2079361657C121955636 @default.
- W2079361657 hasConceptScore W2079361657C129848803 @default.
- W2079361657 hasConceptScore W2079361657C129963666 @default.
- W2079361657 hasConceptScore W2079361657C139945424 @default.
- W2079361657 hasConceptScore W2079361657C144133560 @default.
- W2079361657 hasConceptScore W2079361657C149782125 @default.
- W2079361657 hasConceptScore W2079361657C154945302 @default.
- W2079361657 hasConceptScore W2079361657C160234255 @default.
- W2079361657 hasConceptScore W2079361657C162376815 @default.
- W2079361657 hasConceptScore W2079361657C185429906 @default.
- W2079361657 hasConceptScore W2079361657C19499675 @default.
- W2079361657 hasConceptScore W2079361657C196083921 @default.
- W2079361657 hasConceptScore W2079361657C2776502983 @default.
- W2079361657 hasConceptScore W2079361657C33923547 @default.
- W2079361657 hasConceptScore W2079361657C41008148 @default.
- W2079361657 hasConceptScore W2079361657C83546350 @default.
- W2079361657 hasIssue "2" @default.
- W2079361657 hasLocation W20793616571 @default.
- W2079361657 hasOpenAccess W2079361657 @default.
- W2079361657 hasPrimaryLocation W20793616571 @default.
- W2079361657 hasRelatedWork W106751956 @default.
- W2079361657 hasRelatedWork W2057722517 @default.
- W2079361657 hasRelatedWork W2082092036 @default.
- W2079361657 hasRelatedWork W2167006297 @default.
- W2079361657 hasRelatedWork W2802781792 @default.
- W2079361657 hasRelatedWork W3123335205 @default.
- W2079361657 hasRelatedWork W3124567442 @default.
- W2079361657 hasRelatedWork W4245513681 @default.
- W2079361657 hasRelatedWork W4253558106 @default.
- W2079361657 hasRelatedWork W3129266675 @default.
- W2079361657 hasVolume "60" @default.
- W2079361657 isParatext "false" @default.
- W2079361657 isRetracted "false" @default.
- W2079361657 magId "2079361657" @default.
- W2079361657 workType "article" @default.