Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079427219> ?p ?o ?g. }
- W2079427219 endingPage "28" @default.
- W2079427219 startingPage "1" @default.
- W2079427219 abstract "Abstract Several statistical downscaling models have been developed in the past couple of decades to assess the hydrologic impacts of climate change by projecting the station-scale hydrological variables from large-scale atmospheric variables simulated by general circulation models (GCMs). This paper presents and compares different statistical downscaling models that use multiple linear regression (MLR), positive coefficient regression (PCR), stepwise regression (SR), and support vector machine (SVM) techniques for estimating monthly rainfall amounts in the state of Florida. Mean sea level pressure, air temperature, geopotential height, specific humidity, U wind, and V wind are used as the explanatory variables/predictors in the downscaling models. Data for these variables are obtained from the National Centers for Environmental Prediction–National Center for Atmospheric Research (NCEP–NCAR) reanalysis dataset and the Canadian Centre for Climate Modelling and Analysis (CCCma) Coupled Global Climate Model, version 3 (CGCM3) GCM simulations. The principal component analysis (PCA) and fuzzy c-means clustering method (FCM) are used as part of downscaling model to reduce the dimensionality of the dataset and identify the clusters in the data, respectively. Evaluation of the performances of the models using different error and statistical measures indicates that the SVM-based model performed better than all the other models in reproducing most monthly rainfall statistics at 18 sites. Output from the third-generation CGCM3 GCM for the A1B scenario was used for future projections. For the projection period 2001–10, MLR was used to relate variables at the GCM and NCEP grid scales. Use of MLR in linking the predictor variables at the GCM and NCEP grid scales yielded better reproduction of monthly rainfall statistics at most of the stations (12 out of 18) compared to those by spatial interpolation technique used in earlier studies." @default.
- W2079427219 created "2016-06-24" @default.
- W2079427219 creator A5034017841 @default.
- W2079427219 creator A5067603088 @default.
- W2079427219 creator A5077438487 @default.
- W2079427219 date "2014-11-01" @default.
- W2079427219 modified "2023-09-29" @default.
- W2079427219 title "Development and Evaluation of Statistical Downscaling Models for Monthly Precipitation" @default.
- W2079427219 cites W1508433467 @default.
- W2079427219 cites W1970079192 @default.
- W2079427219 cites W1985869031 @default.
- W2079427219 cites W1997385406 @default.
- W2079427219 cites W2000232702 @default.
- W2079427219 cites W2001039352 @default.
- W2079427219 cites W2005963304 @default.
- W2079427219 cites W2020059831 @default.
- W2079427219 cites W2026156015 @default.
- W2079427219 cites W2026656626 @default.
- W2079427219 cites W2027312235 @default.
- W2079427219 cites W2029993861 @default.
- W2079427219 cites W2033186302 @default.
- W2079427219 cites W2055695879 @default.
- W2079427219 cites W2057355759 @default.
- W2079427219 cites W2064338367 @default.
- W2079427219 cites W2068689590 @default.
- W2079427219 cites W2074197013 @default.
- W2079427219 cites W2076969359 @default.
- W2079427219 cites W2093141926 @default.
- W2079427219 cites W2097091776 @default.
- W2079427219 cites W2101077148 @default.
- W2079427219 cites W2107600083 @default.
- W2079427219 cites W2124485076 @default.
- W2079427219 cites W2125649838 @default.
- W2079427219 cites W2127170577 @default.
- W2079427219 cites W2135541811 @default.
- W2079427219 cites W2143249838 @default.
- W2079427219 cites W2151388232 @default.
- W2079427219 cites W2167235427 @default.
- W2079427219 doi "https://doi.org/10.1175/ei-d-14-0024.1" @default.
- W2079427219 hasPublicationYear "2014" @default.
- W2079427219 type Work @default.
- W2079427219 sameAs 2079427219 @default.
- W2079427219 citedByCount "29" @default.
- W2079427219 countsByYear W20794272192016 @default.
- W2079427219 countsByYear W20794272192017 @default.
- W2079427219 countsByYear W20794272192018 @default.
- W2079427219 countsByYear W20794272192019 @default.
- W2079427219 countsByYear W20794272192020 @default.
- W2079427219 countsByYear W20794272192021 @default.
- W2079427219 countsByYear W20794272192022 @default.
- W2079427219 countsByYear W20794272192023 @default.
- W2079427219 crossrefType "journal-article" @default.
- W2079427219 hasAuthorship W2079427219A5034017841 @default.
- W2079427219 hasAuthorship W2079427219A5067603088 @default.
- W2079427219 hasAuthorship W2079427219A5077438487 @default.
- W2079427219 hasBestOaLocation W20794272191 @default.
- W2079427219 hasConcept C105795698 @default.
- W2079427219 hasConcept C107054158 @default.
- W2079427219 hasConcept C114289077 @default.
- W2079427219 hasConcept C127313418 @default.
- W2079427219 hasConcept C147947694 @default.
- W2079427219 hasConcept C153294291 @default.
- W2079427219 hasConcept C153874254 @default.
- W2079427219 hasConcept C161067210 @default.
- W2079427219 hasConcept C192901106 @default.
- W2079427219 hasConcept C205649164 @default.
- W2079427219 hasConcept C27438332 @default.
- W2079427219 hasConcept C33923547 @default.
- W2079427219 hasConcept C37505551 @default.
- W2079427219 hasConcept C39432304 @default.
- W2079427219 hasConcept C41156917 @default.
- W2079427219 hasConcept C48921125 @default.
- W2079427219 hasConcept C49204034 @default.
- W2079427219 hasConceptScore W2079427219C105795698 @default.
- W2079427219 hasConceptScore W2079427219C107054158 @default.
- W2079427219 hasConceptScore W2079427219C114289077 @default.
- W2079427219 hasConceptScore W2079427219C127313418 @default.
- W2079427219 hasConceptScore W2079427219C147947694 @default.
- W2079427219 hasConceptScore W2079427219C153294291 @default.
- W2079427219 hasConceptScore W2079427219C153874254 @default.
- W2079427219 hasConceptScore W2079427219C161067210 @default.
- W2079427219 hasConceptScore W2079427219C192901106 @default.
- W2079427219 hasConceptScore W2079427219C205649164 @default.
- W2079427219 hasConceptScore W2079427219C27438332 @default.
- W2079427219 hasConceptScore W2079427219C33923547 @default.
- W2079427219 hasConceptScore W2079427219C37505551 @default.
- W2079427219 hasConceptScore W2079427219C39432304 @default.
- W2079427219 hasConceptScore W2079427219C41156917 @default.
- W2079427219 hasConceptScore W2079427219C48921125 @default.
- W2079427219 hasConceptScore W2079427219C49204034 @default.
- W2079427219 hasIssue "18" @default.
- W2079427219 hasLocation W20794272191 @default.
- W2079427219 hasOpenAccess W2079427219 @default.
- W2079427219 hasPrimaryLocation W20794272191 @default.
- W2079427219 hasRelatedWork W1896667768 @default.
- W2079427219 hasRelatedWork W2024569839 @default.
- W2079427219 hasRelatedWork W2161549781 @default.
- W2079427219 hasRelatedWork W2167941809 @default.