Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079432674> ?p ?o ?g. }
- W2079432674 endingPage "158" @default.
- W2079432674 startingPage "149" @default.
- W2079432674 abstract "This study compares six satellite-retrieved land surface emissivity (LSE) products over gravel plains and sand dunes of the hyper-arid Namib desert in Namibia and validates them with in-situ measurements performed with the ‘emissivity box method’. The following products are compared: LSE derived by the Land Surface Analysis — Satellite Application Facility (LSA-SAF) for the Spinning Enhanced Visible and Infrared Imager (SEVIRI) onboard Meteosat Second Generation (MSG), LSE products MOD11A2.C5, MOD11B1.C4.1, and MOD11B1.C5 derived for the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard EOS-Terra, LSE derived with the Temperature Emissivity Separation (TES) algorithm for the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) onboard EOS-Terra, and LSE derived with the TES algorithm for EOS-Terra/MODIS data. The LSA-SAF, MOD11A2.C5, and MOD11B1.C5 algorithms directly or indirectly utilize land cover classification and vegetation cover fraction data with the result that for arid regions their LSE are practically identical to the bare ground emissivities assigned to those classes. Over the gravel plains, mean LSA-SAF, ASTER-TES, and MODTES LSE are about 0.950 in the 11 μm range, whereas mean MOD11A2.C5 and MOD11B1.C5 are about 1.5% (~ 1 K) higher. The LSA-SAF algorithm misclassifies the sand dunes as ‘open & closed shrubland’, which results in an overestimated mean LSE (0.969). Since MOD11A2.C5 and MOD11B1.C5 utilize a similar classification and similar emissivity library data, their LSE estimates for the sand dunes are also too high (mean of 0.972 and 0.980, respectively). In contrast, the physics-based ASTER-TES and MODTES algorithms estimate mean sand dune LSE as 0.952 and 0.948, respectively. The physics-based MOD11B1.C4.1 algorithm produced noisy LSE estimates with frequent outliers at 5 km resolution: spatial averaging yielded mean LSE of 0.950 and 0.954 for the gravel plains and the sand dunes, respectively. Based on a combined analysis of in-situ LSE and TES retrieved LSE, and also accounting for uncertainty in the fraction of dry grass (only gravel plains), for future work it is recommended to use SEVIRI ch10.8 emissivities of 0.941 ± 0.004 for the sand dunes and 0.944 ± 0.015 for the gravel plains, respectively. The results suggest that split window algorithms would benefit significantly from using physically based MODTES LSE." @default.
- W2079432674 created "2016-06-24" @default.
- W2079432674 creator A5022212905 @default.
- W2079432674 creator A5067674679 @default.
- W2079432674 date "2012-09-01" @default.
- W2079432674 modified "2023-10-16" @default.
- W2079432674 title "Validation of six satellite-retrieved land surface emissivity products over two land cover types in a hyper-arid region" @default.
- W2079432674 cites W1628569117 @default.
- W2079432674 cites W1907030336 @default.
- W2079432674 cites W1972649457 @default.
- W2079432674 cites W1973004910 @default.
- W2079432674 cites W1988573917 @default.
- W2079432674 cites W1989624126 @default.
- W2079432674 cites W1993475121 @default.
- W2079432674 cites W2000488564 @default.
- W2079432674 cites W2006516130 @default.
- W2079432674 cites W2006872782 @default.
- W2079432674 cites W2015978071 @default.
- W2079432674 cites W2019754483 @default.
- W2079432674 cites W2021753259 @default.
- W2079432674 cites W2024810474 @default.
- W2079432674 cites W2026361440 @default.
- W2079432674 cites W2029106460 @default.
- W2079432674 cites W2029660080 @default.
- W2079432674 cites W2030109722 @default.
- W2079432674 cites W2033394108 @default.
- W2079432674 cites W2035160660 @default.
- W2079432674 cites W2043579401 @default.
- W2079432674 cites W2060422749 @default.
- W2079432674 cites W2086252724 @default.
- W2079432674 cites W2087870584 @default.
- W2079432674 cites W2097134202 @default.
- W2079432674 cites W2111033638 @default.
- W2079432674 cites W2122227543 @default.
- W2079432674 cites W2140095899 @default.
- W2079432674 cites W2147332065 @default.
- W2079432674 cites W2155897273 @default.
- W2079432674 cites W2160525105 @default.
- W2079432674 cites W2162814161 @default.
- W2079432674 cites W2164482094 @default.
- W2079432674 cites W2164519221 @default.
- W2079432674 cites W2167539649 @default.
- W2079432674 cites W2169278316 @default.
- W2079432674 cites W2169447826 @default.
- W2079432674 cites W2174770302 @default.
- W2079432674 doi "https://doi.org/10.1016/j.rse.2012.05.010" @default.
- W2079432674 hasPublicationYear "2012" @default.
- W2079432674 type Work @default.
- W2079432674 sameAs 2079432674 @default.
- W2079432674 citedByCount "60" @default.
- W2079432674 countsByYear W20794326742012 @default.
- W2079432674 countsByYear W20794326742013 @default.
- W2079432674 countsByYear W20794326742014 @default.
- W2079432674 countsByYear W20794326742015 @default.
- W2079432674 countsByYear W20794326742016 @default.
- W2079432674 countsByYear W20794326742017 @default.
- W2079432674 countsByYear W20794326742018 @default.
- W2079432674 countsByYear W20794326742019 @default.
- W2079432674 countsByYear W20794326742020 @default.
- W2079432674 countsByYear W20794326742021 @default.
- W2079432674 countsByYear W20794326742022 @default.
- W2079432674 countsByYear W20794326742023 @default.
- W2079432674 crossrefType "journal-article" @default.
- W2079432674 hasAuthorship W2079432674A5022212905 @default.
- W2079432674 hasAuthorship W2079432674A5067674679 @default.
- W2079432674 hasConcept C120189094 @default.
- W2079432674 hasConcept C120665830 @default.
- W2079432674 hasConcept C121332964 @default.
- W2079432674 hasConcept C127313418 @default.
- W2079432674 hasConcept C127413603 @default.
- W2079432674 hasConcept C1276947 @default.
- W2079432674 hasConcept C13772937 @default.
- W2079432674 hasConcept C147176958 @default.
- W2079432674 hasConcept C150772632 @default.
- W2079432674 hasConcept C151730666 @default.
- W2079432674 hasConcept C153294291 @default.
- W2079432674 hasConcept C163651212 @default.
- W2079432674 hasConcept C181843262 @default.
- W2079432674 hasConcept C19269812 @default.
- W2079432674 hasConcept C205649164 @default.
- W2079432674 hasConcept C2777007095 @default.
- W2079432674 hasConcept C2777480484 @default.
- W2079432674 hasConcept C2780648208 @default.
- W2079432674 hasConcept C39432304 @default.
- W2079432674 hasConcept C4792198 @default.
- W2079432674 hasConcept C62649853 @default.
- W2079432674 hasConceptScore W2079432674C120189094 @default.
- W2079432674 hasConceptScore W2079432674C120665830 @default.
- W2079432674 hasConceptScore W2079432674C121332964 @default.
- W2079432674 hasConceptScore W2079432674C127313418 @default.
- W2079432674 hasConceptScore W2079432674C127413603 @default.
- W2079432674 hasConceptScore W2079432674C1276947 @default.
- W2079432674 hasConceptScore W2079432674C13772937 @default.
- W2079432674 hasConceptScore W2079432674C147176958 @default.
- W2079432674 hasConceptScore W2079432674C150772632 @default.
- W2079432674 hasConceptScore W2079432674C151730666 @default.
- W2079432674 hasConceptScore W2079432674C153294291 @default.
- W2079432674 hasConceptScore W2079432674C163651212 @default.