Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079438105> ?p ?o ?g. }
Showing items 1 to 62 of
62
with 100 items per page.
- W2079438105 endingPage "10" @default.
- W2079438105 startingPage "1" @default.
- W2079438105 abstract "Communications on Pure and Applied MathematicsVolume 7, Issue 1 p. 1-10 Article Mathematical methods in compressible flow theory M. J. Lighthill, M. J. Lighthill University of Manchester, EnglandSearch for more papers by this author M. J. Lighthill, M. J. Lighthill University of Manchester, EnglandSearch for more papers by this author First published: February 1954 https://doi.org/10.1002/cpa.3160070102Citations: 4AboutPDF ToolsRequest permissionExport citationAdd to favoritesTrack citation ShareShare Give accessShare full text accessShare full-text accessPlease review our Terms and Conditions of Use and check box below to share full-text version of article.I have read and accept the Wiley Online Library Terms and Conditions of UseShareable LinkUse the link below to share a full-text version of this article with your friends and colleagues. Learn more.Copy URL Share a linkShare onEmailFacebookTwitterLinkedInRedditWechat Bibliography 1 Gadd, G. E., On the interaction with a completely laminar boundary layer of a shock wave generated in the mainstream, Aeronautical Research Council, Report No. 15, 100 (unpublished). 2 Whitham, G. B., The flow pattern of a supersonic projectile, Communications on Pure and Applied Mathematics, Volume 5, 1952, p. 301. 3 Oswstitsch, K., and Wieghardt, K., Theoretical analysis of stationary potential flows and boundary layers at high speed, National Advisory Committee for Aeronautics, Technical Memorandum No. 1189, 1948, reprinted from German wartime report, 1941. 4 Liepmann, H. W., Roshko, A., and Dhawan, S., On the reflection of shock waves from boundary layers, Guggenheim Aeronautical Laboratory, California Institute of Technology, Report, 1949, National Advisory Committee for Aeronautics, Technical Note No. 2334, 1951. 5 Lees, L., Interaction between the laminar boundary layer over a plane surface and an incident oblique shock wave, Princeton University Aeronautical Engineering Laboratory, Report No. 143, 1949. 6 Lees, L., and Crocco, L., A mixing theory for the interaction between dissipative flows and nearly-isentropic streams, Princeton University Aeronautical Engineering Laboratory, Report No. 187, 1952. 7 Howarth, L., The propagation of steady disturbances in a supersonic stream bounded on one side by a parallel subsonic stream, Proceedings of the Cambridge Philosophical Society, Volume 44, 1948, p. 380. 8 Tsien, H. S., and Finston, M., Interaction between parallel streams of subsonic and supersonic velocities, Journal of the Aeronautical Sciences, Volume 16, 1949, p. 515. 9 Lighthill, M. J., Reflection at a laminar boundary layer of a weak steady disturbance to a supersonic stream, neglecting viscosity and heat conduction, Quarterly Journal of Mechanics and Applied Mathematics, Volume 3, 1950, p. 303. 10 Lighthill, M. J., On boundary layers and upstream influence, Parts I and II, Proceedings of the Royal Society, Volume 217, pp. 344–357 and 378–407. 11 Lighthill, M. J., The energy distribution behind decaying shocks. I, Plane waves, Philosophical Magazine, Volume 41, 1950, p. 1101. 12 Whitham, G. B., The behaviour of supersonic flow past a body of revolution, far from the axis, Proceedings of the Royal Society, Volume 201, 1950, p. 89. 13 Lighthill, M. J., A technique for rendering approximate solutions to physical problems uniformly valid, Philosophical Magazine, Volume 40, 1949, p. 1179. 14 Warren, C. H. E., Sonic bangs, a quantitative explanation, Royal Aircraft Establishment, Technical Note No. 2192, Farnborough, 1952. 15 Allen, H. J., and Perkins, E. W., A study of effects of viscosity on flow over slender inclined bodies of revolution, National Advisory Committee for Aeronautics, Report No. 1048, 1951. 16 Lees, L., The stability of the laminar boundary layer in a compressible fluid, National Advisory Committee for Aeronautics, Technical Note No. 1360, July 1947. 17 Lighthill, M. J., On sound generated aerodynamically. I, General theory, Proceedings of the Royal Society, Volume 211, 1952, p. 564. 18 Westley, R., and Lilley, G. M., An investigation into the noise field from a small jet and methods for its reduction, College of Aeronautics, Report No. 53, Cranfield, 1952. 19 Gerrard, J. H., Experiments on jet noise, to appear. 20 Lassiter, L. W., and Hubbard, H. H., Experimental studies of noise from subsonic jets in still air, National Advisory Committee for Aeronautics, Technical Note No. 2757, 1952. 21 Fitzpatrick, H. M., and Lee, R., Measurements of noise radiated by subsonic air jets, David Taylor Model Basin, Report No. 835, 1952. 22 Proudman, I., The generation of noise by isotropic turbulence, Proceedings of the Royal Society, Volume 214, 1952, p. 119. 23 Lighthill, M. J., On sound generated aerodynamically. II. Turbulence as a source of sound, to appear in Proceedings of the Royal Society. Citing Literature Volume7, Issue1February 1954Pages 1-10 ReferencesRelatedInformation" @default.
- W2079438105 created "2016-06-24" @default.
- W2079438105 creator A5012364247 @default.
- W2079438105 date "1954-02-01" @default.
- W2079438105 modified "2023-09-24" @default.
- W2079438105 title "Mathematical methods in compressible flow theory" @default.
- W2079438105 cites W1604306590 @default.
- W2079438105 cites W2010765626 @default.
- W2079438105 cites W2051638317 @default.
- W2079438105 cites W2059891553 @default.
- W2079438105 cites W2089927820 @default.
- W2079438105 cites W2325183500 @default.
- W2079438105 doi "https://doi.org/10.1002/cpa.3160070102" @default.
- W2079438105 hasPublicationYear "1954" @default.
- W2079438105 type Work @default.
- W2079438105 sameAs 2079438105 @default.
- W2079438105 citedByCount "5" @default.
- W2079438105 crossrefType "journal-article" @default.
- W2079438105 hasAuthorship W2079438105A5012364247 @default.
- W2079438105 hasConcept C111603439 @default.
- W2079438105 hasConcept C121332964 @default.
- W2079438105 hasConcept C154775046 @default.
- W2079438105 hasConcept C161191863 @default.
- W2079438105 hasConcept C166957645 @default.
- W2079438105 hasConcept C33923547 @default.
- W2079438105 hasConcept C41008148 @default.
- W2079438105 hasConcept C42475967 @default.
- W2079438105 hasConcept C57879066 @default.
- W2079438105 hasConcept C76563973 @default.
- W2079438105 hasConcept C95457728 @default.
- W2079438105 hasConceptScore W2079438105C111603439 @default.
- W2079438105 hasConceptScore W2079438105C121332964 @default.
- W2079438105 hasConceptScore W2079438105C154775046 @default.
- W2079438105 hasConceptScore W2079438105C161191863 @default.
- W2079438105 hasConceptScore W2079438105C166957645 @default.
- W2079438105 hasConceptScore W2079438105C33923547 @default.
- W2079438105 hasConceptScore W2079438105C41008148 @default.
- W2079438105 hasConceptScore W2079438105C42475967 @default.
- W2079438105 hasConceptScore W2079438105C57879066 @default.
- W2079438105 hasConceptScore W2079438105C76563973 @default.
- W2079438105 hasConceptScore W2079438105C95457728 @default.
- W2079438105 hasIssue "1" @default.
- W2079438105 hasLocation W20794381051 @default.
- W2079438105 hasOpenAccess W2079438105 @default.
- W2079438105 hasPrimaryLocation W20794381051 @default.
- W2079438105 hasRelatedWork W1548232877 @default.
- W2079438105 hasRelatedWork W1649082371 @default.
- W2079438105 hasRelatedWork W1980244690 @default.
- W2079438105 hasRelatedWork W1986855946 @default.
- W2079438105 hasRelatedWork W2051337662 @default.
- W2079438105 hasRelatedWork W2130838166 @default.
- W2079438105 hasRelatedWork W2323739641 @default.
- W2079438105 hasRelatedWork W2360080983 @default.
- W2079438105 hasRelatedWork W1490685668 @default.
- W2079438105 hasRelatedWork W59019336 @default.
- W2079438105 hasVolume "7" @default.
- W2079438105 isParatext "false" @default.
- W2079438105 isRetracted "false" @default.
- W2079438105 magId "2079438105" @default.
- W2079438105 workType "article" @default.