Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079458462> ?p ?o ?g. }
- W2079458462 endingPage "5682" @default.
- W2079458462 startingPage "5669" @default.
- W2079458462 abstract "Purpose: Fully automatic and accurate breast lesion segmentation is an essential and challenging task. In this paper, the authors develop a novel, effective, and fully automatic method for breast ultrasound (BUS) image segmentation. Methods: The segmentation method utilizes a novel phase feature to improve the image quality, and a novel neutrosophic clustering approach to detect the accurate lesion boundary. First, a region of interest is generated to cut off complex background. After speckle reduction, an enhancement algorithm based on phase in max‐energy orientation (PMO) is developed to further improve the image quality. The PMO is a newly proposed 2D phase feature obtained by filtering the image in the frequency domain and calculating the phase accumulation in the orientation with maximum energy. Finally, the authors propose a novel clustering approach called neutrosophic l‐means (NLM) to detect the lesion boundary. NLM is a generalized clustering method that can be used to solve other clustering problems as well. In this paper, NLM is used to segment images with vague boundaries, and to deal with uncertainty better. To evaluate the performance of the proposed method, the authors compare it with the traditional fuzzy c‐means clustering, active contour, level set, and watershed‐based segmentation methods, using a common database. Radiologist's manual delineations are used as the golden standards. Five assessment metrics are utilized to evaluate the performance from different aspects. Both accuracy and efficiency are analyzed. Sensitivity analysis is also conducted to test the robustness of the proposed method. Results: Compared with the other methods, the proposed method generates the most similar boundaries to the radiologist's manual delineations (TP rate is 92.4%, FP rate is 7.2%, and similarity rate is 86.3%; Hausdorff distance is 22.5 pixels and mean absolute distance is 4.8 pixels), with efficient processing speed (averagely 9.8 s per image). Sensitivity analysis shows the robustness of the proposed method as well. Conclusions: The proposed method is a fully automatic segmentation method for BUS images that can generate accurate lesion boundaries even for complicated cases. The fast processing speed, robustness, and accuracy of the proposed method suggest its potential applications in clinics." @default.
- W2079458462 created "2016-06-24" @default.
- W2079458462 creator A5020469612 @default.
- W2079458462 creator A5035742417 @default.
- W2079458462 creator A5071931462 @default.
- W2079458462 date "2012-08-29" @default.
- W2079458462 modified "2023-10-17" @default.
- W2079458462 title "A novel segmentation method for breast ultrasound images based on neutrosophic l‐means clustering" @default.
- W2079458462 cites W1967890997 @default.
- W2079458462 cites W1970091020 @default.
- W2079458462 cites W1984211790 @default.
- W2079458462 cites W1988819287 @default.
- W2079458462 cites W1989033067 @default.
- W2079458462 cites W1990368529 @default.
- W2079458462 cites W1994263824 @default.
- W2079458462 cites W2003435520 @default.
- W2079458462 cites W2015005243 @default.
- W2079458462 cites W2051725640 @default.
- W2079458462 cites W2060175823 @default.
- W2079458462 cites W2066717182 @default.
- W2079458462 cites W2091533733 @default.
- W2079458462 cites W2110505741 @default.
- W2079458462 cites W2111708437 @default.
- W2079458462 cites W2113076747 @default.
- W2079458462 cites W2113282793 @default.
- W2079458462 cites W2116440302 @default.
- W2079458462 cites W2119249988 @default.
- W2079458462 cites W2122264932 @default.
- W2079458462 cites W2123139184 @default.
- W2079458462 cites W2126801281 @default.
- W2079458462 cites W2130094715 @default.
- W2079458462 cites W2133044234 @default.
- W2079458462 cites W2134491911 @default.
- W2079458462 cites W2158734599 @default.
- W2079458462 cites W2160754664 @default.
- W2079458462 cites W2963972644 @default.
- W2079458462 cites W3016413756 @default.
- W2079458462 doi "https://doi.org/10.1118/1.4747271" @default.
- W2079458462 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22957633" @default.
- W2079458462 hasPublicationYear "2012" @default.
- W2079458462 type Work @default.
- W2079458462 sameAs 2079458462 @default.
- W2079458462 citedByCount "95" @default.
- W2079458462 countsByYear W20794584622012 @default.
- W2079458462 countsByYear W20794584622013 @default.
- W2079458462 countsByYear W20794584622014 @default.
- W2079458462 countsByYear W20794584622015 @default.
- W2079458462 countsByYear W20794584622016 @default.
- W2079458462 countsByYear W20794584622017 @default.
- W2079458462 countsByYear W20794584622018 @default.
- W2079458462 countsByYear W20794584622019 @default.
- W2079458462 countsByYear W20794584622020 @default.
- W2079458462 countsByYear W20794584622021 @default.
- W2079458462 countsByYear W20794584622022 @default.
- W2079458462 countsByYear W20794584622023 @default.
- W2079458462 crossrefType "journal-article" @default.
- W2079458462 hasAuthorship W2079458462A5020469612 @default.
- W2079458462 hasAuthorship W2079458462A5035742417 @default.
- W2079458462 hasAuthorship W2079458462A5071931462 @default.
- W2079458462 hasConcept C102290492 @default.
- W2079458462 hasConcept C104317684 @default.
- W2079458462 hasConcept C121608353 @default.
- W2079458462 hasConcept C124504099 @default.
- W2079458462 hasConcept C126322002 @default.
- W2079458462 hasConcept C138885662 @default.
- W2079458462 hasConcept C153180895 @default.
- W2079458462 hasConcept C154945302 @default.
- W2079458462 hasConcept C17212007 @default.
- W2079458462 hasConcept C185592680 @default.
- W2079458462 hasConcept C2776401178 @default.
- W2079458462 hasConcept C2777423100 @default.
- W2079458462 hasConcept C2780472235 @default.
- W2079458462 hasConcept C31972630 @default.
- W2079458462 hasConcept C41008148 @default.
- W2079458462 hasConcept C41895202 @default.
- W2079458462 hasConcept C530470458 @default.
- W2079458462 hasConcept C55493867 @default.
- W2079458462 hasConcept C63479239 @default.
- W2079458462 hasConcept C71924100 @default.
- W2079458462 hasConcept C73555534 @default.
- W2079458462 hasConcept C89600930 @default.
- W2079458462 hasConceptScore W2079458462C102290492 @default.
- W2079458462 hasConceptScore W2079458462C104317684 @default.
- W2079458462 hasConceptScore W2079458462C121608353 @default.
- W2079458462 hasConceptScore W2079458462C124504099 @default.
- W2079458462 hasConceptScore W2079458462C126322002 @default.
- W2079458462 hasConceptScore W2079458462C138885662 @default.
- W2079458462 hasConceptScore W2079458462C153180895 @default.
- W2079458462 hasConceptScore W2079458462C154945302 @default.
- W2079458462 hasConceptScore W2079458462C17212007 @default.
- W2079458462 hasConceptScore W2079458462C185592680 @default.
- W2079458462 hasConceptScore W2079458462C2776401178 @default.
- W2079458462 hasConceptScore W2079458462C2777423100 @default.
- W2079458462 hasConceptScore W2079458462C2780472235 @default.
- W2079458462 hasConceptScore W2079458462C31972630 @default.
- W2079458462 hasConceptScore W2079458462C41008148 @default.
- W2079458462 hasConceptScore W2079458462C41895202 @default.
- W2079458462 hasConceptScore W2079458462C530470458 @default.