Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079470797> ?p ?o ?g. }
- W2079470797 endingPage "946" @default.
- W2079470797 startingPage "936" @default.
- W2079470797 abstract "A new general linear model (GLM) beamformer method is described for processing magnetoencephalography (MEG) data. A standard nonlinear beamformer is used to determine the time course of neuronal activation for each point in a predefined source space. A Hilbert transform gives the envelope of oscillatory activity at each location in any chosen frequency band (not necessary in the case of sustained (DC) fields), enabling the general linear model to be applied and a volumetric T statistic image to be determined. The new method is illustrated by a two-source simulation (sustained field and 20 Hz) and is shown to provide accurate localization. The method is also shown to locate accurately the increasing and decreasing gamma activities to the temporal and frontal lobes, respectively, in the case of a scintillating scotoma. The new method brings the advantages of the general linear model to the analysis of MEG data and should prove useful for the localization of changing patterns of activity across all frequency ranges including DC (sustained fields)." @default.
- W2079470797 created "2016-06-24" @default.
- W2079470797 creator A5005491067 @default.
- W2079470797 creator A5009946179 @default.
- W2079470797 creator A5010555252 @default.
- W2079470797 creator A5015670742 @default.
- W2079470797 creator A5016394785 @default.
- W2079470797 creator A5016639346 @default.
- W2079470797 creator A5021850243 @default.
- W2079470797 creator A5044411257 @default.
- W2079470797 creator A5074954558 @default.
- W2079470797 creator A5083338138 @default.
- W2079470797 date "2004-11-01" @default.
- W2079470797 modified "2023-09-29" @default.
- W2079470797 title "A general linear model for MEG beamformer imaging" @default.
- W2079470797 cites W1966862016 @default.
- W2079470797 cites W1972213824 @default.
- W2079470797 cites W1975155248 @default.
- W2079470797 cites W1977582519 @default.
- W2079470797 cites W1979246170 @default.
- W2079470797 cites W1985551621 @default.
- W2079470797 cites W1986462959 @default.
- W2079470797 cites W1987333243 @default.
- W2079470797 cites W1989045420 @default.
- W2079470797 cites W1992263344 @default.
- W2079470797 cites W1993148254 @default.
- W2079470797 cites W1998776339 @default.
- W2079470797 cites W2000142440 @default.
- W2079470797 cites W2009480762 @default.
- W2079470797 cites W2021323092 @default.
- W2079470797 cites W2021971380 @default.
- W2079470797 cites W2025438810 @default.
- W2079470797 cites W2025534354 @default.
- W2079470797 cites W2034621486 @default.
- W2079470797 cites W2037168061 @default.
- W2079470797 cites W2049967486 @default.
- W2079470797 cites W2050151003 @default.
- W2079470797 cites W2058713030 @default.
- W2079470797 cites W2062772757 @default.
- W2079470797 cites W2064452374 @default.
- W2079470797 cites W2067578320 @default.
- W2079470797 cites W2067896066 @default.
- W2079470797 cites W2069907607 @default.
- W2079470797 cites W2074137442 @default.
- W2079470797 cites W2082015290 @default.
- W2079470797 cites W2087566602 @default.
- W2079470797 cites W2087636287 @default.
- W2079470797 cites W2090781932 @default.
- W2079470797 cites W2093293159 @default.
- W2079470797 cites W2098670395 @default.
- W2079470797 cites W2106072070 @default.
- W2079470797 cites W2120078534 @default.
- W2079470797 cites W2122903065 @default.
- W2079470797 cites W2140276435 @default.
- W2079470797 doi "https://doi.org/10.1016/j.neuroimage.2004.06.031" @default.
- W2079470797 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/15528094" @default.
- W2079470797 hasPublicationYear "2004" @default.
- W2079470797 type Work @default.
- W2079470797 sameAs 2079470797 @default.
- W2079470797 citedByCount "48" @default.
- W2079470797 countsByYear W20794707972012 @default.
- W2079470797 countsByYear W20794707972013 @default.
- W2079470797 countsByYear W20794707972014 @default.
- W2079470797 countsByYear W20794707972015 @default.
- W2079470797 countsByYear W20794707972016 @default.
- W2079470797 countsByYear W20794707972017 @default.
- W2079470797 countsByYear W20794707972018 @default.
- W2079470797 countsByYear W20794707972019 @default.
- W2079470797 countsByYear W20794707972020 @default.
- W2079470797 countsByYear W20794707972021 @default.
- W2079470797 countsByYear W20794707972022 @default.
- W2079470797 countsByYear W20794707972023 @default.
- W2079470797 crossrefType "journal-article" @default.
- W2079470797 hasAuthorship W2079470797A5005491067 @default.
- W2079470797 hasAuthorship W2079470797A5009946179 @default.
- W2079470797 hasAuthorship W2079470797A5010555252 @default.
- W2079470797 hasAuthorship W2079470797A5015670742 @default.
- W2079470797 hasAuthorship W2079470797A5016394785 @default.
- W2079470797 hasAuthorship W2079470797A5016639346 @default.
- W2079470797 hasAuthorship W2079470797A5021850243 @default.
- W2079470797 hasAuthorship W2079470797A5044411257 @default.
- W2079470797 hasAuthorship W2079470797A5074954558 @default.
- W2079470797 hasAuthorship W2079470797A5083338138 @default.
- W2079470797 hasConcept C105795698 @default.
- W2079470797 hasConcept C11413529 @default.
- W2079470797 hasConcept C118552586 @default.
- W2079470797 hasConcept C119857082 @default.
- W2079470797 hasConcept C121332964 @default.
- W2079470797 hasConcept C153180895 @default.
- W2079470797 hasConcept C154945302 @default.
- W2079470797 hasConcept C15744967 @default.
- W2079470797 hasConcept C158622935 @default.
- W2079470797 hasConcept C163175372 @default.
- W2079470797 hasConcept C202444582 @default.
- W2079470797 hasConcept C33923547 @default.
- W2079470797 hasConcept C41008148 @default.
- W2079470797 hasConcept C49766605 @default.
- W2079470797 hasConcept C522805319 @default.