Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079506503> ?p ?o ?g. }
- W2079506503 endingPage "993" @default.
- W2079506503 startingPage "982" @default.
- W2079506503 abstract "Aquatic habitat suitability models have increasingly received attention due to their wide management applications. Ecological expert knowledge has been frequently incorporated in such models to link environmental conditions to the quantitative habitat suitability of aquatic species. Since the formalisation of problem-specific human expert knowledge is often difficult and tedious, data-driven machine learning techniques may be helpful to extract knowledge from ecological datasets. In this paper, both expert knowledge-based and data-driven fuzzy habitat suitability models were developed and the performance of these models was compared. For the data-driven models, a hill-climbing optimisation algorithm was applied to derive ecological knowledge from the available data. Based on the available ecological expert knowledge and on biological samples from the Zwalm river basin (Belgium), habitat suitability models were generated for the mayfly Baetis rhodani (Pictet 1843). Data-driven models appeared to outperform expert knowledge-based models substantially, while a step-forward model selection procedure indicated that physical habitat variables adequately described the mayfly habitat suitability in the studied area. This study has important implications on the application of expert knowledge in ecological studies, especially if this knowledge is extrapolated to other areas. The results suggest that data-driven models can complement expert knowledge-based approaches and hence improve model reliability." @default.
- W2079506503 created "2016-06-24" @default.
- W2079506503 creator A5014127586 @default.
- W2079506503 creator A5065809873 @default.
- W2079506503 creator A5071357715 @default.
- W2079506503 date "2009-08-01" @default.
- W2079506503 modified "2023-09-25" @default.
- W2079506503 title "Knowledge-based versus data-driven fuzzy habitat suitability models for river management" @default.
- W2079506503 cites W1504311403 @default.
- W2079506503 cites W1546706199 @default.
- W2079506503 cites W1552647955 @default.
- W2079506503 cites W1963600966 @default.
- W2079506503 cites W1972823834 @default.
- W2079506503 cites W1972956867 @default.
- W2079506503 cites W1973803025 @default.
- W2079506503 cites W1980174978 @default.
- W2079506503 cites W1981041583 @default.
- W2079506503 cites W1984740740 @default.
- W2079506503 cites W1985925500 @default.
- W2079506503 cites W1987835158 @default.
- W2079506503 cites W1991962451 @default.
- W2079506503 cites W1998653577 @default.
- W2079506503 cites W2009313389 @default.
- W2079506503 cites W2026301394 @default.
- W2079506503 cites W2028389683 @default.
- W2079506503 cites W2034101756 @default.
- W2079506503 cites W2038393238 @default.
- W2079506503 cites W2038892427 @default.
- W2079506503 cites W2043023859 @default.
- W2079506503 cites W2043320726 @default.
- W2079506503 cites W2046795336 @default.
- W2079506503 cites W2047665556 @default.
- W2079506503 cites W2050607405 @default.
- W2079506503 cites W2050702833 @default.
- W2079506503 cites W2053154970 @default.
- W2079506503 cites W2057212111 @default.
- W2079506503 cites W2060350020 @default.
- W2079506503 cites W2061778335 @default.
- W2079506503 cites W2070045870 @default.
- W2079506503 cites W2076028350 @default.
- W2079506503 cites W2077820713 @default.
- W2079506503 cites W2077822176 @default.
- W2079506503 cites W2083634659 @default.
- W2079506503 cites W2089454337 @default.
- W2079506503 cites W2095481507 @default.
- W2079506503 cites W2098827790 @default.
- W2079506503 cites W2113375225 @default.
- W2079506503 cites W2115268776 @default.
- W2079506503 cites W2115534079 @default.
- W2079506503 cites W2116544104 @default.
- W2079506503 cites W2116665868 @default.
- W2079506503 cites W2116932472 @default.
- W2079506503 cites W2118254415 @default.
- W2079506503 cites W2119479037 @default.
- W2079506503 cites W2120160157 @default.
- W2079506503 cites W2120544827 @default.
- W2079506503 cites W2123538678 @default.
- W2079506503 cites W2130695471 @default.
- W2079506503 cites W2139857790 @default.
- W2079506503 cites W2140037112 @default.
- W2079506503 cites W2142568711 @default.
- W2079506503 cites W2142635246 @default.
- W2079506503 cites W2155187887 @default.
- W2079506503 cites W2155462172 @default.
- W2079506503 cites W2166210340 @default.
- W2079506503 cites W2167518054 @default.
- W2079506503 cites W2168213791 @default.
- W2079506503 cites W2170473141 @default.
- W2079506503 cites W2171367564 @default.
- W2079506503 cites W2469176441 @default.
- W2079506503 cites W2520512601 @default.
- W2079506503 cites W4211007335 @default.
- W2079506503 cites W4232966077 @default.
- W2079506503 cites W4238380085 @default.
- W2079506503 doi "https://doi.org/10.1016/j.envsoft.2009.02.005" @default.
- W2079506503 hasPublicationYear "2009" @default.
- W2079506503 type Work @default.
- W2079506503 sameAs 2079506503 @default.
- W2079506503 citedByCount "101" @default.
- W2079506503 countsByYear W20795065032012 @default.
- W2079506503 countsByYear W20795065032013 @default.
- W2079506503 countsByYear W20795065032014 @default.
- W2079506503 countsByYear W20795065032015 @default.
- W2079506503 countsByYear W20795065032016 @default.
- W2079506503 countsByYear W20795065032017 @default.
- W2079506503 countsByYear W20795065032018 @default.
- W2079506503 countsByYear W20795065032019 @default.
- W2079506503 countsByYear W20795065032020 @default.
- W2079506503 countsByYear W20795065032021 @default.
- W2079506503 countsByYear W20795065032022 @default.
- W2079506503 countsByYear W20795065032023 @default.
- W2079506503 crossrefType "journal-article" @default.
- W2079506503 hasAuthorship W2079506503A5014127586 @default.
- W2079506503 hasAuthorship W2079506503A5065809873 @default.
- W2079506503 hasAuthorship W2079506503A5071357715 @default.
- W2079506503 hasConcept C119857082 @default.
- W2079506503 hasConcept C154945302 @default.
- W2079506503 hasConcept C185933670 @default.