Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079549965> ?p ?o ?g. }
- W2079549965 endingPage "1487" @default.
- W2079549965 startingPage "1475" @default.
- W2079549965 abstract "Predicting cognitive performance of subjects from their magnetic resonance imaging (MRI) measures and identifying relevant imaging biomarkers are important research topics in the study of Alzheimer's disease. Traditionally, this task is performed by formulating a linear regression problem. Recently, it is found that using a linear sparse regression model can achieve better prediction accuracy. However, most existing studies only focus on the exploitation of sparsity of regression coefficients, ignoring useful structure information in regression coefficients. Also, these linear sparse models may not capture more complicated and possibly nonlinear relationships between cognitive performance and MRI measures. Motivated by these observations, in this work we build a sparse multivariate regression model for this task and propose an empirical sparse Bayesian learning algorithm. Different from existing sparse algorithms, the proposed algorithm models the response as a nonlinear function of the predictors by extending the predictor matrix with block structures. Further, it exploits not only inter-vector correlation among regression coefficient vectors, but also intra-block correlation in each regression coefficient vector. Experiments on the Alzheimer's Disease Neuroimaging Initiative database showed that the proposed algorithm not only achieved better prediction performance than state-of-the-art competitive methods, but also effectively identified biologically meaningful patterns." @default.
- W2079549965 created "2016-06-24" @default.
- W2079549965 creator A5001700017 @default.
- W2079549965 creator A5004575115 @default.
- W2079549965 creator A5010674973 @default.
- W2079549965 creator A5051090513 @default.
- W2079549965 creator A5060575116 @default.
- W2079549965 creator A5079147812 @default.
- W2079549965 creator A5081305410 @default.
- W2079549965 date "2014-07-01" @default.
- W2079549965 modified "2023-10-17" @default.
- W2079549965 title "Identifying the Neuroanatomical Basis of Cognitive Impairment in Alzheimer's Disease by Correlation- and Nonlinearity-Aware Sparse Bayesian Learning" @default.
- W2079549965 cites W1575168451 @default.
- W2079549965 cites W1588839144 @default.
- W2079549965 cites W1648445109 @default.
- W2079549965 cites W1847168837 @default.
- W2079549965 cites W1953027527 @default.
- W2079549965 cites W1976076281 @default.
- W2079549965 cites W1983182638 @default.
- W2079549965 cites W1987011701 @default.
- W2079549965 cites W1989229423 @default.
- W2079549965 cites W1992054897 @default.
- W2079549965 cites W1997228011 @default.
- W2079549965 cites W2000292092 @default.
- W2079549965 cites W2003497549 @default.
- W2079549965 cites W2004293194 @default.
- W2079549965 cites W2010176747 @default.
- W2079549965 cites W2019306339 @default.
- W2079549965 cites W2033419225 @default.
- W2079549965 cites W2039018899 @default.
- W2079549965 cites W2041050058 @default.
- W2079549965 cites W2046847841 @default.
- W2079549965 cites W205297045 @default.
- W2079549965 cites W2056717962 @default.
- W2079549965 cites W2076776015 @default.
- W2079549965 cites W2078524519 @default.
- W2079549965 cites W2084358449 @default.
- W2079549965 cites W2088538739 @default.
- W2079549965 cites W2092828638 @default.
- W2079549965 cites W2095377654 @default.
- W2079549965 cites W2103132444 @default.
- W2079549965 cites W2122825543 @default.
- W2079549965 cites W2127870457 @default.
- W2079549965 cites W2128422359 @default.
- W2079549965 cites W2128431628 @default.
- W2079549965 cites W2134910934 @default.
- W2079549965 cites W2146000945 @default.
- W2079549965 cites W2147276092 @default.
- W2079549965 cites W2148154358 @default.
- W2079549965 cites W2148601182 @default.
- W2079549965 cites W2151721316 @default.
- W2079549965 cites W2156220037 @default.
- W2079549965 cites W2159347337 @default.
- W2079549965 cites W2166823048 @default.
- W2079549965 cites W2171831801 @default.
- W2079549965 cites W2511885285 @default.
- W2079549965 cites W3101788651 @default.
- W2079549965 cites W4255455317 @default.
- W2079549965 doi "https://doi.org/10.1109/tmi.2014.2314712" @default.
- W2079549965 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4113117" @default.
- W2079549965 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24710828" @default.
- W2079549965 hasPublicationYear "2014" @default.
- W2079549965 type Work @default.
- W2079549965 sameAs 2079549965 @default.
- W2079549965 citedByCount "50" @default.
- W2079549965 countsByYear W20795499652014 @default.
- W2079549965 countsByYear W20795499652015 @default.
- W2079549965 countsByYear W20795499652017 @default.
- W2079549965 countsByYear W20795499652018 @default.
- W2079549965 countsByYear W20795499652019 @default.
- W2079549965 countsByYear W20795499652020 @default.
- W2079549965 countsByYear W20795499652021 @default.
- W2079549965 countsByYear W20795499652022 @default.
- W2079549965 countsByYear W20795499652023 @default.
- W2079549965 crossrefType "journal-article" @default.
- W2079549965 hasAuthorship W2079549965A5001700017 @default.
- W2079549965 hasAuthorship W2079549965A5004575115 @default.
- W2079549965 hasAuthorship W2079549965A5010674973 @default.
- W2079549965 hasAuthorship W2079549965A5051090513 @default.
- W2079549965 hasAuthorship W2079549965A5060575116 @default.
- W2079549965 hasAuthorship W2079549965A5079147812 @default.
- W2079549965 hasAuthorship W2079549965A5081305410 @default.
- W2079549965 hasBestOaLocation W20795499652 @default.
- W2079549965 hasConcept C105795698 @default.
- W2079549965 hasConcept C107673813 @default.
- W2079549965 hasConcept C117220453 @default.
- W2079549965 hasConcept C118552586 @default.
- W2079549965 hasConcept C119857082 @default.
- W2079549965 hasConcept C12267149 @default.
- W2079549965 hasConcept C152877465 @default.
- W2079549965 hasConcept C153180895 @default.
- W2079549965 hasConcept C154945302 @default.
- W2079549965 hasConcept C15744967 @default.
- W2079549965 hasConcept C161584116 @default.
- W2079549965 hasConcept C2524010 @default.
- W2079549965 hasConcept C33923547 @default.
- W2079549965 hasConcept C41008148 @default.
- W2079549965 hasConcept C48921125 @default.