Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079588880> ?p ?o ?g. }
- W2079588880 abstract "Purpose: Mammography is the most widely accepted and utilized screening modality for early breast cancer detection. Providing high quality mammography education to radiology trainees is essential, since excellent interpretation skills are needed to ensure the highest benefit of screening mammography for patients. The authors have previously proposed a computer‐aided education system based on trainee models. Those models relate human‐assessed image characteristics to trainee error. In this study, the authors propose to build trainee models that utilize features automatically extracted from images using computer vision algorithms to predict likelihood of missing each mass by the trainee. This computer vision‐based approach to trainee modeling will allow for automatically searching large databases of mammograms in order to identify challenging cases for each trainee. Methods: The authors’ algorithm for predicting the likelihood of missing a mass consists of three steps. First, a mammogram is segmented into air, pectoral muscle, fatty tissue, dense tissue, and mass using automated segmentation algorithms. Second, 43 features are extracted using computer vision algorithms for each abnormality identified by experts. Third, error‐making models (classifiers) are applied to predict the likelihood of trainees missing the abnormality based on the extracted features. The models are developed individually for each trainee using his/her previous reading data. The authors evaluated the predictive performance of the proposed algorithm using data from a reader study in which 10 subjects (7 residents and 3 novices) and 3 experts read 100 mammographic cases. Receiver operating characteristic (ROC) methodology was applied for the evaluation. Results: The average area under the ROC curve (AUC) of the error‐making models for the task of predicting which masses will be detected and which will be missed was 0.607 (95% CI,0.564‐0.650). This value was statistically significantly different from 0.5 ( p < 0.0001). For the 7 residents only, the AUC performance of the models was 0.590 (95% CI,0.537‐0.642) and was also significantly higher than 0.5 ( p = 0.0009). Therefore, generally the authors’ models were able to predict which masses were detected and which were missed better than chance. Conclusions: The authors proposed an algorithm that was able to predict which masses will be detected and which will be missed by each individual trainee. This confirms existence of error‐making patterns in the detection of masses among radiology trainees. Furthermore, the proposed methodology will allow for the optimized selection of difficult cases for the trainees in an automatic and efficient manner." @default.
- W2079588880 created "2016-06-24" @default.
- W2079588880 creator A5001300575 @default.
- W2079588880 creator A5021390512 @default.
- W2079588880 creator A5040192736 @default.
- W2079588880 creator A5055835444 @default.
- W2079588880 creator A5059755883 @default.
- W2079588880 creator A5085814851 @default.
- W2079588880 date "2014-08-20" @default.
- W2079588880 modified "2023-09-26" @default.
- W2079588880 title "Using computer-extracted image features for modeling of error-making patterns in detection of mammographic masses among radiology residents" @default.
- W2079588880 cites W182992402 @default.
- W2079588880 cites W1870657480 @default.
- W2079588880 cites W1971621572 @default.
- W2079588880 cites W1972626213 @default.
- W2079588880 cites W1985107154 @default.
- W2079588880 cites W1989100781 @default.
- W2079588880 cites W2007693625 @default.
- W2079588880 cites W2010120422 @default.
- W2079588880 cites W2011362207 @default.
- W2079588880 cites W2017661730 @default.
- W2079588880 cites W2023392037 @default.
- W2079588880 cites W2029034858 @default.
- W2079588880 cites W2033741688 @default.
- W2079588880 cites W2096579040 @default.
- W2079588880 cites W2101771332 @default.
- W2079588880 cites W2109597745 @default.
- W2079588880 cites W2129534965 @default.
- W2079588880 cites W2131378922 @default.
- W2079588880 cites W2161817637 @default.
- W2079588880 cites W3106889297 @default.
- W2079588880 cites W750159254 @default.
- W2079588880 doi "https://doi.org/10.1118/1.4892173" @default.
- W2079588880 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25186394" @default.
- W2079588880 hasPublicationYear "2014" @default.
- W2079588880 type Work @default.
- W2079588880 sameAs 2079588880 @default.
- W2079588880 citedByCount "14" @default.
- W2079588880 countsByYear W20795888802016 @default.
- W2079588880 countsByYear W20795888802017 @default.
- W2079588880 countsByYear W20795888802018 @default.
- W2079588880 countsByYear W20795888802019 @default.
- W2079588880 countsByYear W20795888802020 @default.
- W2079588880 countsByYear W20795888802021 @default.
- W2079588880 countsByYear W20795888802023 @default.
- W2079588880 crossrefType "journal-article" @default.
- W2079588880 hasAuthorship W2079588880A5001300575 @default.
- W2079588880 hasAuthorship W2079588880A5021390512 @default.
- W2079588880 hasAuthorship W2079588880A5040192736 @default.
- W2079588880 hasAuthorship W2079588880A5055835444 @default.
- W2079588880 hasAuthorship W2079588880A5059755883 @default.
- W2079588880 hasAuthorship W2079588880A5085814851 @default.
- W2079588880 hasConcept C119857082 @default.
- W2079588880 hasConcept C121608353 @default.
- W2079588880 hasConcept C126322002 @default.
- W2079588880 hasConcept C153180895 @default.
- W2079588880 hasConcept C154945302 @default.
- W2079588880 hasConcept C19527891 @default.
- W2079588880 hasConcept C2780226545 @default.
- W2079588880 hasConcept C2780472235 @default.
- W2079588880 hasConcept C31601959 @default.
- W2079588880 hasConcept C31972630 @default.
- W2079588880 hasConcept C41008148 @default.
- W2079588880 hasConcept C530470458 @default.
- W2079588880 hasConcept C71924100 @default.
- W2079588880 hasConcept C89600930 @default.
- W2079588880 hasConcept C9357733 @default.
- W2079588880 hasConceptScore W2079588880C119857082 @default.
- W2079588880 hasConceptScore W2079588880C121608353 @default.
- W2079588880 hasConceptScore W2079588880C126322002 @default.
- W2079588880 hasConceptScore W2079588880C153180895 @default.
- W2079588880 hasConceptScore W2079588880C154945302 @default.
- W2079588880 hasConceptScore W2079588880C19527891 @default.
- W2079588880 hasConceptScore W2079588880C2780226545 @default.
- W2079588880 hasConceptScore W2079588880C2780472235 @default.
- W2079588880 hasConceptScore W2079588880C31601959 @default.
- W2079588880 hasConceptScore W2079588880C31972630 @default.
- W2079588880 hasConceptScore W2079588880C41008148 @default.
- W2079588880 hasConceptScore W2079588880C530470458 @default.
- W2079588880 hasConceptScore W2079588880C71924100 @default.
- W2079588880 hasConceptScore W2079588880C89600930 @default.
- W2079588880 hasConceptScore W2079588880C9357733 @default.
- W2079588880 hasIssue "9" @default.
- W2079588880 hasLocation W20795888801 @default.
- W2079588880 hasLocation W20795888802 @default.
- W2079588880 hasOpenAccess W2079588880 @default.
- W2079588880 hasPrimaryLocation W20795888801 @default.
- W2079588880 hasRelatedWork W1669643531 @default.
- W2079588880 hasRelatedWork W1982826852 @default.
- W2079588880 hasRelatedWork W2005437358 @default.
- W2079588880 hasRelatedWork W2008656436 @default.
- W2079588880 hasRelatedWork W2023558673 @default.
- W2079588880 hasRelatedWork W2110230079 @default.
- W2079588880 hasRelatedWork W2134924024 @default.
- W2079588880 hasRelatedWork W2517104666 @default.
- W2079588880 hasRelatedWork W2613186388 @default.
- W2079588880 hasRelatedWork W1967061043 @default.
- W2079588880 hasVolume "41" @default.
- W2079588880 isParatext "false" @default.
- W2079588880 isRetracted "false" @default.