Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079598971> ?p ?o ?g. }
- W2079598971 endingPage "2436" @default.
- W2079598971 startingPage "2425" @default.
- W2079598971 abstract "Tensor-based object recognition has been widely studied in the past several years. This paper focuses on the issue of joint feature selection from the tensor data and proposes a novel method called joint tensor feature analysis (JTFA) for tensor feature extraction and recognition. In order to obtain a set of jointly sparse projections for tensor feature extraction, we define the modified within-class tensor scatter value and the modified between-class tensor scatter value for regression. The k-mode optimization technique and the L(2,1)-norm jointly sparse regression are combined together to compute the optimal solutions. The convergent analysis, computational complexity analysis and the essence of the proposed method/model are also presented. It is interesting to show that the proposed method is very similar to singular value decomposition on the scatter matrix but with sparsity constraint on the right singular value matrix or eigen-decomposition on the scatter matrix with sparse manner. Experimental results on some tensor datasets indicate that JTFA outperforms some well-known tensor feature extraction and selection algorithms." @default.
- W2079598971 created "2016-06-24" @default.
- W2079598971 creator A5026662451 @default.
- W2079598971 creator A5026796400 @default.
- W2079598971 creator A5050192797 @default.
- W2079598971 creator A5052625074 @default.
- W2079598971 creator A5082756048 @default.
- W2079598971 date "2015-11-01" @default.
- W2079598971 modified "2023-10-18" @default.
- W2079598971 title "Joint Tensor Feature Analysis For Visual Object Recognition" @default.
- W2079598971 cites W1494198676 @default.
- W2079598971 cites W1967643748 @default.
- W2079598971 cites W1968178977 @default.
- W2079598971 cites W1975900269 @default.
- W2079598971 cites W1978606608 @default.
- W2079598971 cites W1992051107 @default.
- W2079598971 cites W1993049083 @default.
- W2079598971 cites W1996452481 @default.
- W2079598971 cites W2011832962 @default.
- W2079598971 cites W2020836902 @default.
- W2079598971 cites W2021864104 @default.
- W2079598971 cites W2027717478 @default.
- W2079598971 cites W2029234388 @default.
- W2079598971 cites W2033419168 @default.
- W2079598971 cites W2042289698 @default.
- W2079598971 cites W2053684156 @default.
- W2079598971 cites W2063978378 @default.
- W2079598971 cites W2072509929 @default.
- W2079598971 cites W2076363162 @default.
- W2079598971 cites W2102544846 @default.
- W2079598971 cites W2103537693 @default.
- W2079598971 cites W2105055468 @default.
- W2079598971 cites W2110627953 @default.
- W2079598971 cites W2121647436 @default.
- W2079598971 cites W2122825543 @default.
- W2079598971 cites W2135463994 @default.
- W2079598971 cites W2138451337 @default.
- W2079598971 cites W2141200867 @default.
- W2079598971 cites W2142919304 @default.
- W2079598971 cites W2144990628 @default.
- W2079598971 cites W2146634731 @default.
- W2079598971 cites W2154624311 @default.
- W2079598971 cites W2162985290 @default.
- W2079598971 cites W2166213322 @default.
- W2079598971 cites W2166446427 @default.
- W2079598971 cites W2611015177 @default.
- W2079598971 cites W4229749918 @default.
- W2079598971 doi "https://doi.org/10.1109/tcyb.2014.2374452" @default.
- W2079598971 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/26470058" @default.
- W2079598971 hasPublicationYear "2015" @default.
- W2079598971 type Work @default.
- W2079598971 sameAs 2079598971 @default.
- W2079598971 citedByCount "67" @default.
- W2079598971 countsByYear W20795989712016 @default.
- W2079598971 countsByYear W20795989712017 @default.
- W2079598971 countsByYear W20795989712018 @default.
- W2079598971 countsByYear W20795989712019 @default.
- W2079598971 countsByYear W20795989712020 @default.
- W2079598971 countsByYear W20795989712021 @default.
- W2079598971 countsByYear W20795989712022 @default.
- W2079598971 crossrefType "journal-article" @default.
- W2079598971 hasAuthorship W2079598971A5026662451 @default.
- W2079598971 hasAuthorship W2079598971A5026796400 @default.
- W2079598971 hasAuthorship W2079598971A5050192797 @default.
- W2079598971 hasAuthorship W2079598971A5052625074 @default.
- W2079598971 hasAuthorship W2079598971A5082756048 @default.
- W2079598971 hasConcept C106487976 @default.
- W2079598971 hasConcept C109282560 @default.
- W2079598971 hasConcept C121332964 @default.
- W2079598971 hasConcept C148483581 @default.
- W2079598971 hasConcept C153180895 @default.
- W2079598971 hasConcept C154945302 @default.
- W2079598971 hasConcept C155281189 @default.
- W2079598971 hasConcept C158693339 @default.
- W2079598971 hasConcept C159985019 @default.
- W2079598971 hasConcept C192562407 @default.
- W2079598971 hasConcept C22789450 @default.
- W2079598971 hasConcept C2524010 @default.
- W2079598971 hasConcept C33923547 @default.
- W2079598971 hasConcept C41008148 @default.
- W2079598971 hasConcept C52622490 @default.
- W2079598971 hasConcept C62520636 @default.
- W2079598971 hasConcept C92207270 @default.
- W2079598971 hasConceptScore W2079598971C106487976 @default.
- W2079598971 hasConceptScore W2079598971C109282560 @default.
- W2079598971 hasConceptScore W2079598971C121332964 @default.
- W2079598971 hasConceptScore W2079598971C148483581 @default.
- W2079598971 hasConceptScore W2079598971C153180895 @default.
- W2079598971 hasConceptScore W2079598971C154945302 @default.
- W2079598971 hasConceptScore W2079598971C155281189 @default.
- W2079598971 hasConceptScore W2079598971C158693339 @default.
- W2079598971 hasConceptScore W2079598971C159985019 @default.
- W2079598971 hasConceptScore W2079598971C192562407 @default.
- W2079598971 hasConceptScore W2079598971C22789450 @default.
- W2079598971 hasConceptScore W2079598971C2524010 @default.
- W2079598971 hasConceptScore W2079598971C33923547 @default.
- W2079598971 hasConceptScore W2079598971C41008148 @default.
- W2079598971 hasConceptScore W2079598971C52622490 @default.