Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079662948> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W2079662948 endingPage "186" @default.
- W2079662948 startingPage "165" @default.
- W2079662948 abstract "Accurate determination of the maximum allowable product temperature during primary drying is critical to optimization of the freeze drying process. For an amorphous solute system, this maximum temperature is normally the collapse temperature. Methodologies for determining the collapse temperature involve direct microscopic observation of collapse during freeze drying and methods which, in effect, determine the glass transition temperature of the amorphous phase. While one might be tempted to assume that the collapse temperature is a property only of the material, and independent of details of the measurement method, both theoretical concepts and limited experimental observations suggest that this assumption may not be wholly correct. The main objective of this research is to determine the magnitude of variations in measured collapse temperature caused by variations in experimental methodology. The approach taken is both experimental, using moxalactam di-sodium formulated with 12% mannitol as a model, and theoretical. The theoretical analysis is based on two fundamental concepts. Firstly, for collapse to be observed, viscous flow of the amorphous phase must occur over a finite distance during the measurement time. Secondly, during a freeze drying process, water is removed from the amorphous phase once the ice-vapor boundary recedes past the region of interest. Since water removal increases viscosity, viscous flow, and therefore, collapse is partially arrested, and the effective collapse temperature will be increased, the effect being greater the faster the sublimation rate. A quantitative model based on these concepts is developed with key parameters being evaluated by experimental studies. The observed variation in collapse temperature of moxalactam di-sodium with sublimation rate is quantitatively predicted by the theory. The theory is used to investigate differences between collapse temperatures determined by laboratory procedures and the observation of collapse in production processes. The collapse temperature will increase as the sublimation rate increases (i.e., as the solute concentration decreases), and at constant sublimation rate, the collapse temperature may increase as the surface area of the solid increases. In general, product freeze drying in a vial will collapse at a slightly higher temperature than collapse measured by the microscopic method. However, the calculated variations in collapse temperatures are modest (1–3°C). Collapse temperature and glass transition temperature, T′g, are not identical, the latter being slightly lower when measured at low rates of temperature increase. A secondary but important experimental result is that, contrary to some opinion in the literature, water in a glassy system has sufficient mobility to be in approximate ‘equilibrium’ with the ice phase during the relatively slow temperature changes relevant to freeze drying operations." @default.
- W2079662948 created "2016-06-24" @default.
- W2079662948 creator A5012281491 @default.
- W2079662948 creator A5064626648 @default.
- W2079662948 date "1990-07-01" @default.
- W2079662948 modified "2023-10-14" @default.
- W2079662948 title "The collapse temperature in freeze drying: Dependence on measurement methodology and rate of water removal from the glassy phase" @default.
- W2079662948 cites W1992015043 @default.
- W2079662948 cites W1993675089 @default.
- W2079662948 cites W2040724197 @default.
- W2079662948 cites W2045454730 @default.
- W2079662948 cites W2074963586 @default.
- W2079662948 cites W2079804122 @default.
- W2079662948 cites W2080370993 @default.
- W2079662948 cites W2092005997 @default.
- W2079662948 cites W2095243199 @default.
- W2079662948 cites W2170496577 @default.
- W2079662948 cites W2318468975 @default.
- W2079662948 cites W2320440858 @default.
- W2079662948 doi "https://doi.org/10.1016/0378-5173(90)90231-r" @default.
- W2079662948 hasPublicationYear "1990" @default.
- W2079662948 type Work @default.
- W2079662948 sameAs 2079662948 @default.
- W2079662948 citedByCount "266" @default.
- W2079662948 countsByYear W20796629482012 @default.
- W2079662948 countsByYear W20796629482013 @default.
- W2079662948 countsByYear W20796629482014 @default.
- W2079662948 countsByYear W20796629482015 @default.
- W2079662948 countsByYear W20796629482016 @default.
- W2079662948 countsByYear W20796629482017 @default.
- W2079662948 countsByYear W20796629482018 @default.
- W2079662948 countsByYear W20796629482019 @default.
- W2079662948 countsByYear W20796629482020 @default.
- W2079662948 countsByYear W20796629482021 @default.
- W2079662948 countsByYear W20796629482022 @default.
- W2079662948 countsByYear W20796629482023 @default.
- W2079662948 crossrefType "journal-article" @default.
- W2079662948 hasAuthorship W2079662948A5012281491 @default.
- W2079662948 hasAuthorship W2079662948A5064626648 @default.
- W2079662948 hasConcept C121332964 @default.
- W2079662948 hasConcept C122865956 @default.
- W2079662948 hasConcept C15744967 @default.
- W2079662948 hasConcept C159985019 @default.
- W2079662948 hasConcept C178790620 @default.
- W2079662948 hasConcept C185592680 @default.
- W2079662948 hasConcept C192562407 @default.
- W2079662948 hasConcept C2909971615 @default.
- W2079662948 hasConcept C501593827 @default.
- W2079662948 hasConcept C521977710 @default.
- W2079662948 hasConcept C542102704 @default.
- W2079662948 hasConcept C55493867 @default.
- W2079662948 hasConcept C56052488 @default.
- W2079662948 hasConcept C57879066 @default.
- W2079662948 hasConcept C58437636 @default.
- W2079662948 hasConcept C64778159 @default.
- W2079662948 hasConcept C97355855 @default.
- W2079662948 hasConceptScore W2079662948C121332964 @default.
- W2079662948 hasConceptScore W2079662948C122865956 @default.
- W2079662948 hasConceptScore W2079662948C15744967 @default.
- W2079662948 hasConceptScore W2079662948C159985019 @default.
- W2079662948 hasConceptScore W2079662948C178790620 @default.
- W2079662948 hasConceptScore W2079662948C185592680 @default.
- W2079662948 hasConceptScore W2079662948C192562407 @default.
- W2079662948 hasConceptScore W2079662948C2909971615 @default.
- W2079662948 hasConceptScore W2079662948C501593827 @default.
- W2079662948 hasConceptScore W2079662948C521977710 @default.
- W2079662948 hasConceptScore W2079662948C542102704 @default.
- W2079662948 hasConceptScore W2079662948C55493867 @default.
- W2079662948 hasConceptScore W2079662948C56052488 @default.
- W2079662948 hasConceptScore W2079662948C57879066 @default.
- W2079662948 hasConceptScore W2079662948C58437636 @default.
- W2079662948 hasConceptScore W2079662948C64778159 @default.
- W2079662948 hasConceptScore W2079662948C97355855 @default.
- W2079662948 hasIssue "2-3" @default.
- W2079662948 hasLocation W20796629481 @default.
- W2079662948 hasOpenAccess W2079662948 @default.
- W2079662948 hasPrimaryLocation W20796629481 @default.
- W2079662948 hasRelatedWork W1971414604 @default.
- W2079662948 hasRelatedWork W1974884331 @default.
- W2079662948 hasRelatedWork W2015970533 @default.
- W2079662948 hasRelatedWork W2017055889 @default.
- W2079662948 hasRelatedWork W2082618523 @default.
- W2079662948 hasRelatedWork W2321184270 @default.
- W2079662948 hasRelatedWork W2788566089 @default.
- W2079662948 hasRelatedWork W2899084033 @default.
- W2079662948 hasRelatedWork W4324311194 @default.
- W2079662948 hasRelatedWork W876143523 @default.
- W2079662948 hasVolume "62" @default.
- W2079662948 isParatext "false" @default.
- W2079662948 isRetracted "false" @default.
- W2079662948 magId "2079662948" @default.
- W2079662948 workType "article" @default.