Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079672040> ?p ?o ?g. }
- W2079672040 endingPage "4940" @default.
- W2079672040 startingPage "4932" @default.
- W2079672040 abstract "Kramers’ formula for the rate of barrier crossing as a function of solvent friction is here rederived using the method of reactive flux. In the reactive flux formalism trajectories are started at the top of the barrier and propagated forward for a short time, to determine whether they are reactive or not. In isolated molecules it is customary to associate with each set of initial conditions a reactivity index (traditionally known as the characteristic function), which is 1 for a reactive trajectory and 0 for a nonreactive trajectory. In this paper we suggest that if the solvent interaction with the system is treated stochastically, it is appropriate to generalize the reactivity index to fractional values between 0 and 1, to take into account an ensemble average over different stochastic histories. We show how this fractional reactivity index can be calculated analytically, by using an analytic solution of the phase space Fokker–Planck equation. Starting with the distribution δ(x)δ(u−u0) that originates at the top of a parabolic barrier (x=0) at t=0, the fraction of the distribution function that is to the right of x=0, in the limit that t→∞, is the fractional reactivity index. The analytical expression for the fractional reactivity index leads immediately to Kramers’ expression for the rate constant. The derivation shows explicitly that the dynamical origin of Kramers’ prefactor is trajectories that recross the barrier. The evolution of the phase space distribution that originates at the top of the barrier highlights an interesting underlying phase space structure of this system, which may be considered as a paradigm for dissipative systems whose underlying dynamics is unstable." @default.
- W2079672040 created "2016-06-24" @default.
- W2079672040 creator A5005564351 @default.
- W2079672040 creator A5016002854 @default.
- W2079672040 date "1994-04-01" @default.
- W2079672040 modified "2023-09-23" @default.
- W2079672040 title "Derivation of Kramers’ formula for condensed phase reaction rates using the method of reactive flux" @default.
- W2079672040 cites W1745305260 @default.
- W2079672040 cites W1973336144 @default.
- W2079672040 cites W1976282501 @default.
- W2079672040 cites W1983923411 @default.
- W2079672040 cites W1991833545 @default.
- W2079672040 cites W2004895258 @default.
- W2079672040 cites W2007274640 @default.
- W2079672040 cites W2010703720 @default.
- W2079672040 cites W2014295466 @default.
- W2079672040 cites W2022110013 @default.
- W2079672040 cites W2022231452 @default.
- W2079672040 cites W2023043901 @default.
- W2079672040 cites W2027270415 @default.
- W2079672040 cites W2031466699 @default.
- W2079672040 cites W2037709521 @default.
- W2079672040 cites W2038298914 @default.
- W2079672040 cites W2039246606 @default.
- W2079672040 cites W2039640860 @default.
- W2079672040 cites W2043928449 @default.
- W2079672040 cites W2046286471 @default.
- W2079672040 cites W2055863460 @default.
- W2079672040 cites W2056219809 @default.
- W2079672040 cites W2058805513 @default.
- W2079672040 cites W2059980347 @default.
- W2079672040 cites W2066862372 @default.
- W2079672040 cites W2072914576 @default.
- W2079672040 cites W2073756993 @default.
- W2079672040 cites W2076228522 @default.
- W2079672040 cites W2080598163 @default.
- W2079672040 cites W2085266415 @default.
- W2079672040 cites W2087750102 @default.
- W2079672040 cites W2092144432 @default.
- W2079672040 cites W2144539670 @default.
- W2079672040 cites W2162488624 @default.
- W2079672040 cites W2165180793 @default.
- W2079672040 cites W4254774830 @default.
- W2079672040 doi "https://doi.org/10.1063/1.467212" @default.
- W2079672040 hasPublicationYear "1994" @default.
- W2079672040 type Work @default.
- W2079672040 sameAs 2079672040 @default.
- W2079672040 citedByCount "36" @default.
- W2079672040 countsByYear W20796720402013 @default.
- W2079672040 countsByYear W20796720402015 @default.
- W2079672040 countsByYear W20796720402017 @default.
- W2079672040 countsByYear W20796720402018 @default.
- W2079672040 countsByYear W20796720402019 @default.
- W2079672040 countsByYear W20796720402021 @default.
- W2079672040 countsByYear W20796720402022 @default.
- W2079672040 countsByYear W20796720402023 @default.
- W2079672040 crossrefType "journal-article" @default.
- W2079672040 hasAuthorship W2079672040A5005564351 @default.
- W2079672040 hasAuthorship W2079672040A5016002854 @default.
- W2079672040 hasConcept C121332964 @default.
- W2079672040 hasConcept C121864883 @default.
- W2079672040 hasConcept C14036430 @default.
- W2079672040 hasConcept C142724271 @default.
- W2079672040 hasConcept C151342819 @default.
- W2079672040 hasConcept C178790620 @default.
- W2079672040 hasConcept C185592680 @default.
- W2079672040 hasConcept C186603090 @default.
- W2079672040 hasConcept C204787440 @default.
- W2079672040 hasConcept C2776910235 @default.
- W2079672040 hasConcept C37914503 @default.
- W2079672040 hasConcept C68709404 @default.
- W2079672040 hasConcept C71924100 @default.
- W2079672040 hasConcept C78458016 @default.
- W2079672040 hasConcept C86803240 @default.
- W2079672040 hasConcept C97355855 @default.
- W2079672040 hasConceptScore W2079672040C121332964 @default.
- W2079672040 hasConceptScore W2079672040C121864883 @default.
- W2079672040 hasConceptScore W2079672040C14036430 @default.
- W2079672040 hasConceptScore W2079672040C142724271 @default.
- W2079672040 hasConceptScore W2079672040C151342819 @default.
- W2079672040 hasConceptScore W2079672040C178790620 @default.
- W2079672040 hasConceptScore W2079672040C185592680 @default.
- W2079672040 hasConceptScore W2079672040C186603090 @default.
- W2079672040 hasConceptScore W2079672040C204787440 @default.
- W2079672040 hasConceptScore W2079672040C2776910235 @default.
- W2079672040 hasConceptScore W2079672040C37914503 @default.
- W2079672040 hasConceptScore W2079672040C68709404 @default.
- W2079672040 hasConceptScore W2079672040C71924100 @default.
- W2079672040 hasConceptScore W2079672040C78458016 @default.
- W2079672040 hasConceptScore W2079672040C86803240 @default.
- W2079672040 hasConceptScore W2079672040C97355855 @default.
- W2079672040 hasIssue "7" @default.
- W2079672040 hasLocation W20796720401 @default.
- W2079672040 hasOpenAccess W2079672040 @default.
- W2079672040 hasPrimaryLocation W20796720401 @default.
- W2079672040 hasRelatedWork W2036237592 @default.
- W2079672040 hasRelatedWork W2048244686 @default.
- W2079672040 hasRelatedWork W2150004169 @default.