Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079672223> ?p ?o ?g. }
- W2079672223 endingPage "393" @default.
- W2079672223 startingPage "361" @default.
- W2079672223 abstract "In this paper, Markov chain Monte Carlo sampling methods are exploited to provide a unified, practical likelihood-based framework for the analysis of stochastic volatility models. A highly effective method is developed that samples all the unobserved volatilities at once using an approximating offset mixture model, followed by an importance reweighting procedure. This approach is compared with several alternative methods using real data. The paper also develops simulation-based methods for filtering, likelihood evaluation and model failure diagnostics. The issue of model choice using non-nested likelihood ratios and Bayes factors is also investigated. These methods are used to compare the fit of stochastic volatility and GARCH models. All the procedures are illustrated in detail." @default.
- W2079672223 created "2016-06-24" @default.
- W2079672223 creator A5009830100 @default.
- W2079672223 creator A5040648384 @default.
- W2079672223 creator A5047291984 @default.
- W2079672223 date "1998-07-01" @default.
- W2079672223 modified "2023-10-10" @default.
- W2079672223 title "Stochastic Volatility: Likelihood Inference and Comparison with ARCH Models" @default.
- W2079672223 cites W1503003940 @default.
- W2079672223 cites W1531947178 @default.
- W2079672223 cites W1600080087 @default.
- W2079672223 cites W1914577290 @default.
- W2079672223 cites W1971863329 @default.
- W2079672223 cites W1975138225 @default.
- W2079672223 cites W1975911643 @default.
- W2079672223 cites W1977304581 @default.
- W2079672223 cites W1991475547 @default.
- W2079672223 cites W1994823593 @default.
- W2079672223 cites W1995565517 @default.
- W2079672223 cites W1999029409 @default.
- W2079672223 cites W2009358468 @default.
- W2079672223 cites W2011398297 @default.
- W2079672223 cites W2015749074 @default.
- W2079672223 cites W2020999234 @default.
- W2079672223 cites W2022895184 @default.
- W2079672223 cites W2025262040 @default.
- W2079672223 cites W2046357557 @default.
- W2079672223 cites W2054599015 @default.
- W2079672223 cites W2055600978 @default.
- W2079672223 cites W2056760934 @default.
- W2079672223 cites W2077611006 @default.
- W2079672223 cites W2083875149 @default.
- W2079672223 cites W2086989538 @default.
- W2079672223 cites W2091797506 @default.
- W2079672223 cites W2098613108 @default.
- W2079672223 cites W2108207895 @default.
- W2079672223 cites W2115724285 @default.
- W2079672223 cites W2120022309 @default.
- W2079672223 cites W2121448470 @default.
- W2079672223 cites W2125996678 @default.
- W2079672223 cites W2130416410 @default.
- W2079672223 cites W2136796925 @default.
- W2079672223 cites W2138309709 @default.
- W2079672223 cites W2148080284 @default.
- W2079672223 cites W2151645884 @default.
- W2079672223 cites W2153155589 @default.
- W2079672223 cites W2153637929 @default.
- W2079672223 cites W2163899311 @default.
- W2079672223 cites W2166698530 @default.
- W2079672223 cites W2169246290 @default.
- W2079672223 cites W2204383650 @default.
- W2079672223 cites W2263098707 @default.
- W2079672223 cites W2571446175 @default.
- W2079672223 cites W2615953416 @default.
- W2079672223 cites W2794515326 @default.
- W2079672223 cites W2903919837 @default.
- W2079672223 cites W3122150532 @default.
- W2079672223 cites W3122296838 @default.
- W2079672223 cites W3124801994 @default.
- W2079672223 cites W3160881378 @default.
- W2079672223 cites W41222772 @default.
- W2079672223 cites W982383590 @default.
- W2079672223 cites W3124845324 @default.
- W2079672223 doi "https://doi.org/10.1111/1467-937x.00050" @default.
- W2079672223 hasPublicationYear "1998" @default.
- W2079672223 type Work @default.
- W2079672223 sameAs 2079672223 @default.
- W2079672223 citedByCount "1882" @default.
- W2079672223 countsByYear W20796722232012 @default.
- W2079672223 countsByYear W20796722232013 @default.
- W2079672223 countsByYear W20796722232014 @default.
- W2079672223 countsByYear W20796722232015 @default.
- W2079672223 countsByYear W20796722232016 @default.
- W2079672223 countsByYear W20796722232017 @default.
- W2079672223 countsByYear W20796722232018 @default.
- W2079672223 countsByYear W20796722232019 @default.
- W2079672223 countsByYear W20796722232020 @default.
- W2079672223 countsByYear W20796722232021 @default.
- W2079672223 countsByYear W20796722232022 @default.
- W2079672223 countsByYear W20796722232023 @default.
- W2079672223 crossrefType "journal-article" @default.
- W2079672223 hasAuthorship W2079672223A5009830100 @default.
- W2079672223 hasAuthorship W2079672223A5040648384 @default.
- W2079672223 hasAuthorship W2079672223A5047291984 @default.
- W2079672223 hasBestOaLocation W20796722232 @default.
- W2079672223 hasConcept C105795698 @default.
- W2079672223 hasConcept C107673813 @default.
- W2079672223 hasConcept C111350023 @default.
- W2079672223 hasConcept C119857082 @default.
- W2079672223 hasConcept C142291917 @default.
- W2079672223 hasConcept C149782125 @default.
- W2079672223 hasConcept C154945302 @default.
- W2079672223 hasConcept C160234255 @default.
- W2079672223 hasConcept C162324750 @default.
- W2079672223 hasConcept C19499675 @default.
- W2079672223 hasConcept C2776214188 @default.
- W2079672223 hasConcept C33923547 @default.
- W2079672223 hasConcept C41008148 @default.