Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079697937> ?p ?o ?g. }
- W2079697937 endingPage "199" @default.
- W2079697937 startingPage "190" @default.
- W2079697937 abstract "The availability of increasing amounts of data to electricity utilities through the implementation of domestic smart metering campaigns has meant that traditional ways of analysing meter reading information such as descriptive statistics has become increasingly difficult. Key characteristic information to the data is often lost, particularly when averaging or aggregation processes are applied. Therefore, other methods of analysing data need to be used so that this information is not lost. One such method which lends itself to analysing large amounts of information is data mining. This allows for the data to be segmented before such aggregation processes are applied. Moreover, segmentation allows for dimension reduction thus enabling easier manipulation of the data. Clustering methods have been used in the electricity industry for some time. However, their use at a domestic level has been somewhat limited to date. This paper investigates three of the most widely used unsupervised clustering methods: k-means, k-medoid and Self Organising Maps (SOM). The best performing technique is then evaluated in order to segment individual households into clusters based on their pattern of electricity use across the day. The process is repeated for each day over a six month period in order to characterise the diurnal, intra-daily and seasonal variations of domestic electricity demand. Based on these results a series of Profile Classes (PC’s) are presented that represent common patterns of electricity use within the home. Finally, each PC is linked to household characteristics by applying a multi-nominal logistic regression to the data. As a result, households and the manner with which they use electricity in the home can be characterised based on individual customer attributes." @default.
- W2079697937 created "2016-06-24" @default.
- W2079697937 creator A5021164804 @default.
- W2079697937 creator A5050613846 @default.
- W2079697937 creator A5066283495 @default.
- W2079697937 date "2015-03-01" @default.
- W2079697937 modified "2023-10-02" @default.
- W2079697937 title "A clustering approach to domestic electricity load profile characterisation using smart metering data" @default.
- W2079697937 cites W1536360942 @default.
- W2079697937 cites W1544180268 @default.
- W2079697937 cites W1565998900 @default.
- W2079697937 cites W1569924876 @default.
- W2079697937 cites W1968112823 @default.
- W2079697937 cites W1977632775 @default.
- W2079697937 cites W1981258814 @default.
- W2079697937 cites W1981291369 @default.
- W2079697937 cites W1983357754 @default.
- W2079697937 cites W1991784242 @default.
- W2079697937 cites W2007448446 @default.
- W2079697937 cites W2011994922 @default.
- W2079697937 cites W2012590891 @default.
- W2079697937 cites W2013486252 @default.
- W2079697937 cites W2019797830 @default.
- W2079697937 cites W2028178832 @default.
- W2079697937 cites W2028291287 @default.
- W2079697937 cites W2034260702 @default.
- W2079697937 cites W2042569829 @default.
- W2079697937 cites W2051224630 @default.
- W2079697937 cites W2056277803 @default.
- W2079697937 cites W2066944067 @default.
- W2079697937 cites W2069726507 @default.
- W2079697937 cites W2070376178 @default.
- W2079697937 cites W2086792939 @default.
- W2079697937 cites W2088587780 @default.
- W2079697937 cites W2103226621 @default.
- W2079697937 cites W2103430225 @default.
- W2079697937 cites W2107573303 @default.
- W2079697937 cites W2117604780 @default.
- W2079697937 cites W2123727888 @default.
- W2079697937 cites W2127732301 @default.
- W2079697937 cites W2134484126 @default.
- W2079697937 cites W2144268297 @default.
- W2079697937 cites W2148406707 @default.
- W2079697937 cites W2157120754 @default.
- W2079697937 cites W2170820890 @default.
- W2079697937 cites W1590241121 @default.
- W2079697937 doi "https://doi.org/10.1016/j.apenergy.2014.12.039" @default.
- W2079697937 hasPublicationYear "2015" @default.
- W2079697937 type Work @default.
- W2079697937 sameAs 2079697937 @default.
- W2079697937 citedByCount "364" @default.
- W2079697937 countsByYear W20796979372015 @default.
- W2079697937 countsByYear W20796979372016 @default.
- W2079697937 countsByYear W20796979372017 @default.
- W2079697937 countsByYear W20796979372018 @default.
- W2079697937 countsByYear W20796979372019 @default.
- W2079697937 countsByYear W20796979372020 @default.
- W2079697937 countsByYear W20796979372021 @default.
- W2079697937 countsByYear W20796979372022 @default.
- W2079697937 countsByYear W20796979372023 @default.
- W2079697937 crossrefType "journal-article" @default.
- W2079697937 hasAuthorship W2079697937A5021164804 @default.
- W2079697937 hasAuthorship W2079697937A5050613846 @default.
- W2079697937 hasAuthorship W2079697937A5066283495 @default.
- W2079697937 hasBestOaLocation W20796979372 @default.
- W2079697937 hasConcept C10558101 @default.
- W2079697937 hasConcept C111919701 @default.
- W2079697937 hasConcept C119599485 @default.
- W2079697937 hasConcept C124101348 @default.
- W2079697937 hasConcept C127413603 @default.
- W2079697937 hasConcept C154945302 @default.
- W2079697937 hasConcept C202444582 @default.
- W2079697937 hasConcept C206658404 @default.
- W2079697937 hasConcept C2779510800 @default.
- W2079697937 hasConcept C30905978 @default.
- W2079697937 hasConcept C33676613 @default.
- W2079697937 hasConcept C33923547 @default.
- W2079697937 hasConcept C41008148 @default.
- W2079697937 hasConcept C73555534 @default.
- W2079697937 hasConcept C78519656 @default.
- W2079697937 hasConcept C98045186 @default.
- W2079697937 hasConceptScore W2079697937C10558101 @default.
- W2079697937 hasConceptScore W2079697937C111919701 @default.
- W2079697937 hasConceptScore W2079697937C119599485 @default.
- W2079697937 hasConceptScore W2079697937C124101348 @default.
- W2079697937 hasConceptScore W2079697937C127413603 @default.
- W2079697937 hasConceptScore W2079697937C154945302 @default.
- W2079697937 hasConceptScore W2079697937C202444582 @default.
- W2079697937 hasConceptScore W2079697937C206658404 @default.
- W2079697937 hasConceptScore W2079697937C2779510800 @default.
- W2079697937 hasConceptScore W2079697937C30905978 @default.
- W2079697937 hasConceptScore W2079697937C33676613 @default.
- W2079697937 hasConceptScore W2079697937C33923547 @default.
- W2079697937 hasConceptScore W2079697937C41008148 @default.
- W2079697937 hasConceptScore W2079697937C73555534 @default.
- W2079697937 hasConceptScore W2079697937C78519656 @default.
- W2079697937 hasConceptScore W2079697937C98045186 @default.
- W2079697937 hasLocation W20796979371 @default.