Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079710880> ?p ?o ?g. }
- W2079710880 endingPage "96" @default.
- W2079710880 startingPage "77" @default.
- W2079710880 abstract "Recently, sparse coding has attracted considerable attention in speech processing. As a promising technique, sparse coding can be widely used for analysis, representation, compression, denoising and separation of speech. To represent signals accurately and sparsely, a good dictionary which contains elemental signals is preferred and many methods have been proposed to learn such a dictionary. However, there is a lack of reasonable evaluation methods to judge whether a dictionary is good enough. To solve this problem, we define a group of measures for dictionary evaluation. These measures not only address sparseness and reconstruction error of signal representation, but also consider denoising and separating performance. We show how to evaluate dictionaries with these measures, and further propose two methods to optimize dictionaries by improving relative measures. The first method improves the efficiency of sparse coding by removing unimportant atoms; the second one improves denoising performance of dictionaries by removing harmful atoms. Experimental results show that the measures can provide reasonable evaluations and the proposed methods for optimization can further improve given dictionaries." @default.
- W2079710880 created "2016-06-24" @default.
- W2079710880 creator A5003433241 @default.
- W2079710880 creator A5026346396 @default.
- W2079710880 creator A5031604617 @default.
- W2079710880 creator A5085823295 @default.
- W2079710880 date "2015-07-01" @default.
- W2079710880 modified "2023-10-18" @default.
- W2079710880 title "Dictionary evaluation and optimization for sparse coding based speech processing" @default.
- W2079710880 cites W1485280399 @default.
- W2079710880 cites W1591116419 @default.
- W2079710880 cites W18046889 @default.
- W2079710880 cites W1972316063 @default.
- W2079710880 cites W1974387177 @default.
- W2079710880 cites W1976709621 @default.
- W2079710880 cites W1986988203 @default.
- W2079710880 cites W1995363561 @default.
- W2079710880 cites W2013682896 @default.
- W2079710880 cites W2022454914 @default.
- W2079710880 cites W2028781966 @default.
- W2079710880 cites W2042422091 @default.
- W2079710880 cites W2050834445 @default.
- W2079710880 cites W2054118750 @default.
- W2079710880 cites W2073390905 @default.
- W2079710880 cites W2078204800 @default.
- W2079710880 cites W2083493778 @default.
- W2079710880 cites W2099641086 @default.
- W2079710880 cites W2104577913 @default.
- W2079710880 cites W2114421877 @default.
- W2079710880 cites W2115429828 @default.
- W2079710880 cites W2115755118 @default.
- W2079710880 cites W2117853853 @default.
- W2079710880 cites W2119667497 @default.
- W2079710880 cites W2120689488 @default.
- W2079710880 cites W2121651107 @default.
- W2079710880 cites W2134474909 @default.
- W2079710880 cites W2135046866 @default.
- W2079710880 cites W2136990130 @default.
- W2079710880 cites W2141520175 @default.
- W2079710880 cites W2145096794 @default.
- W2079710880 cites W2145263492 @default.
- W2079710880 cites W2145889472 @default.
- W2079710880 cites W2150415460 @default.
- W2079710880 cites W2150748440 @default.
- W2079710880 cites W2151693816 @default.
- W2079710880 cites W2160547390 @default.
- W2079710880 cites W2164452299 @default.
- W2079710880 cites W2167188281 @default.
- W2079710880 cites W2167989165 @default.
- W2079710880 cites W2177347332 @default.
- W2079710880 cites W2296616510 @default.
- W2079710880 cites W3100231466 @default.
- W2079710880 cites W340244495 @default.
- W2079710880 doi "https://doi.org/10.1016/j.ins.2015.03.010" @default.
- W2079710880 hasPublicationYear "2015" @default.
- W2079710880 type Work @default.
- W2079710880 sameAs 2079710880 @default.
- W2079710880 citedByCount "7" @default.
- W2079710880 countsByYear W20797108802015 @default.
- W2079710880 countsByYear W20797108802016 @default.
- W2079710880 countsByYear W20797108802018 @default.
- W2079710880 countsByYear W20797108802019 @default.
- W2079710880 crossrefType "journal-article" @default.
- W2079710880 hasAuthorship W2079710880A5003433241 @default.
- W2079710880 hasAuthorship W2079710880A5026346396 @default.
- W2079710880 hasAuthorship W2079710880A5031604617 @default.
- W2079710880 hasAuthorship W2079710880A5085823295 @default.
- W2079710880 hasConcept C105795698 @default.
- W2079710880 hasConcept C124066611 @default.
- W2079710880 hasConcept C153180895 @default.
- W2079710880 hasConcept C154771677 @default.
- W2079710880 hasConcept C154945302 @default.
- W2079710880 hasConcept C163294075 @default.
- W2079710880 hasConcept C179518139 @default.
- W2079710880 hasConcept C28490314 @default.
- W2079710880 hasConcept C33923547 @default.
- W2079710880 hasConcept C41008148 @default.
- W2079710880 hasConcept C77637269 @default.
- W2079710880 hasConceptScore W2079710880C105795698 @default.
- W2079710880 hasConceptScore W2079710880C124066611 @default.
- W2079710880 hasConceptScore W2079710880C153180895 @default.
- W2079710880 hasConceptScore W2079710880C154771677 @default.
- W2079710880 hasConceptScore W2079710880C154945302 @default.
- W2079710880 hasConceptScore W2079710880C163294075 @default.
- W2079710880 hasConceptScore W2079710880C179518139 @default.
- W2079710880 hasConceptScore W2079710880C28490314 @default.
- W2079710880 hasConceptScore W2079710880C33923547 @default.
- W2079710880 hasConceptScore W2079710880C41008148 @default.
- W2079710880 hasConceptScore W2079710880C77637269 @default.
- W2079710880 hasFunder F4320321001 @default.
- W2079710880 hasFunder F4320321543 @default.
- W2079710880 hasFunder F4320323085 @default.
- W2079710880 hasLocation W20797108801 @default.
- W2079710880 hasOpenAccess W2079710880 @default.
- W2079710880 hasPrimaryLocation W20797108801 @default.
- W2079710880 hasRelatedWork W1995401884 @default.
- W2079710880 hasRelatedWork W2011292423 @default.
- W2079710880 hasRelatedWork W2034957211 @default.