Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079749971> ?p ?o ?g. }
- W2079749971 endingPage "1796" @default.
- W2079749971 startingPage "1784" @default.
- W2079749971 abstract "Blue noise point sampling is one of the core algorithms in computer graphics. In this paper, we present a new and versatile variational framework for generating point distributions with high-quality blue noise characteristics while precisely adapting to given density functions. Different from previous approaches based on discrete settings of capacity-constrained Voronoi tessellation, we cast the blue noise sampling generation as a variational problem with continuous settings. Based on an accurate evaluation of the gradient of an energy function, an efficient optimization is developed which delivers significantly faster performance than the previous optimization-based methods. Our framework can easily be extended to generating blue noise point samples on manifold surfaces and for multi-class sampling. The optimization formulation also allows us to naturally deal with dynamic domains, such as deformable surfaces, and to yield blue noise samplings with temporal coherence. We present experimental results to validate the efficacy of our variational framework. Finally, we show a variety of applications of the proposed methods, including nonphotorealistic image stippling, color stippling, and blue noise sampling on deformable surfaces." @default.
- W2079749971 created "2016-06-24" @default.
- W2079749971 creator A5017861297 @default.
- W2079749971 creator A5031008569 @default.
- W2079749971 creator A5033764099 @default.
- W2079749971 creator A5084681548 @default.
- W2079749971 creator A5091588842 @default.
- W2079749971 date "2012-10-01" @default.
- W2079749971 modified "2023-10-01" @default.
- W2079749971 title "Variational Blue Noise Sampling" @default.
- W2079749971 cites W1969745237 @default.
- W2079749971 cites W1975498219 @default.
- W2079749971 cites W1980987098 @default.
- W2079749971 cites W1998664500 @default.
- W2079749971 cites W2005197983 @default.
- W2079749971 cites W2011172006 @default.
- W2079749971 cites W2017099978 @default.
- W2079749971 cites W2020457555 @default.
- W2079749971 cites W2051089395 @default.
- W2079749971 cites W2051434435 @default.
- W2079749971 cites W2051752778 @default.
- W2079749971 cites W2056205248 @default.
- W2079749971 cites W2056422961 @default.
- W2079749971 cites W2057114100 @default.
- W2079749971 cites W2071731662 @default.
- W2079749971 cites W2089508486 @default.
- W2079749971 cites W2094810132 @default.
- W2079749971 cites W2099594591 @default.
- W2079749971 cites W2100938395 @default.
- W2079749971 cites W2114288655 @default.
- W2079749971 cites W2126439213 @default.
- W2079749971 cites W2133493855 @default.
- W2079749971 cites W2142228262 @default.
- W2079749971 cites W2150593711 @default.
- W2079749971 cites W2153935912 @default.
- W2079749971 cites W2162764603 @default.
- W2079749971 cites W2167272335 @default.
- W2079749971 cites W2171074980 @default.
- W2079749971 cites W3136661314 @default.
- W2079749971 cites W3137702954 @default.
- W2079749971 cites W3139527867 @default.
- W2079749971 cites W4232242135 @default.
- W2079749971 cites W4232416900 @default.
- W2079749971 cites W4239270100 @default.
- W2079749971 cites W4247052561 @default.
- W2079749971 cites W4250638048 @default.
- W2079749971 cites W4252967606 @default.
- W2079749971 doi "https://doi.org/10.1109/tvcg.2012.94" @default.
- W2079749971 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22566473" @default.
- W2079749971 hasPublicationYear "2012" @default.
- W2079749971 type Work @default.
- W2079749971 sameAs 2079749971 @default.
- W2079749971 citedByCount "65" @default.
- W2079749971 countsByYear W20797499712012 @default.
- W2079749971 countsByYear W20797499712013 @default.
- W2079749971 countsByYear W20797499712014 @default.
- W2079749971 countsByYear W20797499712015 @default.
- W2079749971 countsByYear W20797499712016 @default.
- W2079749971 countsByYear W20797499712017 @default.
- W2079749971 countsByYear W20797499712018 @default.
- W2079749971 countsByYear W20797499712019 @default.
- W2079749971 countsByYear W20797499712020 @default.
- W2079749971 countsByYear W20797499712021 @default.
- W2079749971 countsByYear W20797499712022 @default.
- W2079749971 countsByYear W20797499712023 @default.
- W2079749971 crossrefType "journal-article" @default.
- W2079749971 hasAuthorship W2079749971A5017861297 @default.
- W2079749971 hasAuthorship W2079749971A5031008569 @default.
- W2079749971 hasAuthorship W2079749971A5033764099 @default.
- W2079749971 hasAuthorship W2079749971A5084681548 @default.
- W2079749971 hasAuthorship W2079749971A5091588842 @default.
- W2079749971 hasBestOaLocation W20797499712 @default.
- W2079749971 hasConcept C106131492 @default.
- W2079749971 hasConcept C11413529 @default.
- W2079749971 hasConcept C114996537 @default.
- W2079749971 hasConcept C115961682 @default.
- W2079749971 hasConcept C126255220 @default.
- W2079749971 hasConcept C140779682 @default.
- W2079749971 hasConcept C154945302 @default.
- W2079749971 hasConcept C163294075 @default.
- W2079749971 hasConcept C187612029 @default.
- W2079749971 hasConcept C200378446 @default.
- W2079749971 hasConcept C24881265 @default.
- W2079749971 hasConcept C2524010 @default.
- W2079749971 hasConcept C28719098 @default.
- W2079749971 hasConcept C29265498 @default.
- W2079749971 hasConcept C31972630 @default.
- W2079749971 hasConcept C33923547 @default.
- W2079749971 hasConcept C41008148 @default.
- W2079749971 hasConcept C99498987 @default.
- W2079749971 hasConceptScore W2079749971C106131492 @default.
- W2079749971 hasConceptScore W2079749971C11413529 @default.
- W2079749971 hasConceptScore W2079749971C114996537 @default.
- W2079749971 hasConceptScore W2079749971C115961682 @default.
- W2079749971 hasConceptScore W2079749971C126255220 @default.
- W2079749971 hasConceptScore W2079749971C140779682 @default.
- W2079749971 hasConceptScore W2079749971C154945302 @default.
- W2079749971 hasConceptScore W2079749971C163294075 @default.