Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079750940> ?p ?o ?g. }
Showing items 1 to 72 of
72
with 100 items per page.
- W2079750940 endingPage "6" @default.
- W2079750940 startingPage "6" @default.
- W2079750940 abstract "Many researchers envision a future of intelligent, personalized agents in their computer workstations. These agents could provide a variety of personalized assistance helping to manage email, schedule meetings, gather and summarize relevant information, track progress of various projects, etc. Perhaps the greatest barrier to creating such intelligent agents is that the data observable to such an agent is unstructured and difficult to automatically interpret – it includes unstructured workstation files (text, images, and other formats), email, calendar entries, web accesses, etc. This talk will discuss current research toward such intelligent workstation agents, and in particular toward making this unstructured data understandable to computer agents. This research is being conducted as part of a multi-university research effort on intelligent personalized assistants. Bio Sketch Tom M. Mitchell is the Fredkin Professor of Computer Science at Carnegie Mellon University. His research lies in the area of machine learning, data mining, artificial intelligence, and information fusion. Mitchell is author of the textbook ”Machine Learning,” Past President of the American Association of Artificial Intelligence (AAAI), and a member of the US National Research Council’s Computer Science and Telecommunications Board. In 2002 he received the Debye Prize from the Edmund Hustinx Foundation for his research in computer science. Mitchell is the founding director of CMU’s Center for Automated Learning and Discovery, an interdisciplinary research center specializing in statistical machine learning and data mining, and the first institution to offer a Ph.D. program specifically in this area. Mitchell’s recent research has focussed on machine learning approaches to analyzing human brain function based on fMRI data, and on machine learning for intellgent personal assistants. Proceedings of the IEEE/WIC/ACM International Conference on Intelligent Agent Technology (IAT’04) 0-7695-2101-0/04 $ 20.00 IEEE" @default.
- W2079750940 created "2016-06-24" @default.
- W2079750940 creator A5034266240 @default.
- W2079750940 date "2004-09-20" @default.
- W2079750940 modified "2023-09-25" @default.
- W2079750940 title "Intelligent Workstation Agents and Unstructured Workstation Data" @default.
- W2079750940 doi "https://doi.org/10.1109/wi.2004.86" @default.
- W2079750940 hasPublicationYear "2004" @default.
- W2079750940 type Work @default.
- W2079750940 sameAs 2079750940 @default.
- W2079750940 citedByCount "0" @default.
- W2079750940 crossrefType "proceedings-article" @default.
- W2079750940 hasAuthorship W2079750940A5034266240 @default.
- W2079750940 hasConcept C111919701 @default.
- W2079750940 hasConcept C11413529 @default.
- W2079750940 hasConcept C136197465 @default.
- W2079750940 hasConcept C136764020 @default.
- W2079750940 hasConcept C142724271 @default.
- W2079750940 hasConcept C154945302 @default.
- W2079750940 hasConcept C165696696 @default.
- W2079750940 hasConcept C2522767166 @default.
- W2079750940 hasConcept C2777532764 @default.
- W2079750940 hasConcept C2779231336 @default.
- W2079750940 hasConcept C38652104 @default.
- W2079750940 hasConcept C41008148 @default.
- W2079750940 hasConcept C67953723 @default.
- W2079750940 hasConcept C71924100 @default.
- W2079750940 hasConcept C74072328 @default.
- W2079750940 hasConceptScore W2079750940C111919701 @default.
- W2079750940 hasConceptScore W2079750940C11413529 @default.
- W2079750940 hasConceptScore W2079750940C136197465 @default.
- W2079750940 hasConceptScore W2079750940C136764020 @default.
- W2079750940 hasConceptScore W2079750940C142724271 @default.
- W2079750940 hasConceptScore W2079750940C154945302 @default.
- W2079750940 hasConceptScore W2079750940C165696696 @default.
- W2079750940 hasConceptScore W2079750940C2522767166 @default.
- W2079750940 hasConceptScore W2079750940C2777532764 @default.
- W2079750940 hasConceptScore W2079750940C2779231336 @default.
- W2079750940 hasConceptScore W2079750940C38652104 @default.
- W2079750940 hasConceptScore W2079750940C41008148 @default.
- W2079750940 hasConceptScore W2079750940C67953723 @default.
- W2079750940 hasConceptScore W2079750940C71924100 @default.
- W2079750940 hasConceptScore W2079750940C74072328 @default.
- W2079750940 hasLocation W20797509401 @default.
- W2079750940 hasOpenAccess W2079750940 @default.
- W2079750940 hasPrimaryLocation W20797509401 @default.
- W2079750940 hasRelatedWork W1665526009 @default.
- W2079750940 hasRelatedWork W1990814456 @default.
- W2079750940 hasRelatedWork W2183785048 @default.
- W2079750940 hasRelatedWork W2587788187 @default.
- W2079750940 hasRelatedWork W2590311703 @default.
- W2079750940 hasRelatedWork W3006283500 @default.
- W2079750940 hasRelatedWork W3208667402 @default.
- W2079750940 hasRelatedWork W3209344300 @default.
- W2079750940 hasRelatedWork W2508727151 @default.
- W2079750940 hasRelatedWork W2508783774 @default.
- W2079750940 hasRelatedWork W2509845505 @default.
- W2079750940 hasRelatedWork W2568400271 @default.
- W2079750940 hasRelatedWork W2576885814 @default.
- W2079750940 hasRelatedWork W2606401672 @default.
- W2079750940 hasRelatedWork W2615484453 @default.
- W2079750940 hasRelatedWork W2625699055 @default.
- W2079750940 hasRelatedWork W2739389722 @default.
- W2079750940 hasRelatedWork W2807926731 @default.
- W2079750940 hasRelatedWork W2921264613 @default.
- W2079750940 hasRelatedWork W2950778090 @default.
- W2079750940 isParatext "false" @default.
- W2079750940 isRetracted "false" @default.
- W2079750940 magId "2079750940" @default.
- W2079750940 workType "article" @default.