Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079758416> ?p ?o ?g. }
- W2079758416 endingPage "297" @default.
- W2079758416 startingPage "245" @default.
- W2079758416 abstract "We consider the problem of providing a resolution proof of the statement that a given graph with n vertices and average degree roughly Δ does not contain an independent set of size k. For randomly chosen graphs and k ≤ n/3, we show that such proofs asymptotically almost surely require size roughly exponential in n/Δ6. This, in particular, implies a 2Ω (n) lower bound for constant degree graphs, and for Δ ≈ n 1/6, shows that there are almost always no short resolution proofs for k as large as n/3 even though a maximum independent set is likely to be much smaller, roughly n 5/6 in size. Our result implies that for graphs that are not too dense, almost all instances of the independent set problem are hard for resolution. Further, it provides an unconditional exponential lower bound on the running time of resolution-based search algorithms for finding a maximum independent set or approximating it within a factor of Δ/(6 ln Δ). We also give relatively simple upper bounds for the problem and show them to be tight for the class of exhaustive backtracking algorithms. We deduce similar complexity results for the related vertex cover problem on random graphs, proving, in particular, that no polynomial-time resolution-based method can achieve an approximation within a factor of 3/2." @default.
- W2079758416 created "2016-06-24" @default.
- W2079758416 creator A5002208831 @default.
- W2079758416 creator A5042076941 @default.
- W2079758416 creator A5077726785 @default.
- W2079758416 date "2007-10-01" @default.
- W2079758416 modified "2023-10-16" @default.
- W2079758416 title "The Resolution Complexity of Independent Sets and Vertex Covers in Random Graphs" @default.
- W2079758416 cites W1501644705 @default.
- W2079758416 cites W1975442866 @default.
- W2079758416 cites W1996359073 @default.
- W2079758416 cites W2001663593 @default.
- W2079758416 cites W2019578639 @default.
- W2079758416 cites W2026771935 @default.
- W2079758416 cites W2027049731 @default.
- W2079758416 cites W2038193643 @default.
- W2079758416 cites W2039982637 @default.
- W2079758416 cites W2057361103 @default.
- W2079758416 cites W2062897452 @default.
- W2079758416 cites W2069767473 @default.
- W2079758416 cites W2073025989 @default.
- W2079758416 cites W2081254453 @default.
- W2079758416 cites W2084384424 @default.
- W2079758416 cites W2088421560 @default.
- W2079758416 cites W2088616860 @default.
- W2079758416 cites W2089534194 @default.
- W2079758416 cites W2097844290 @default.
- W2079758416 cites W2098022011 @default.
- W2079758416 cites W2100505346 @default.
- W2079758416 cites W2100738443 @default.
- W2079758416 cites W2101405134 @default.
- W2079758416 cites W2102749693 @default.
- W2079758416 cites W2117749206 @default.
- W2079758416 cites W2126420408 @default.
- W2079758416 cites W2132489129 @default.
- W2079758416 cites W2133527541 @default.
- W2079758416 cites W2143391442 @default.
- W2079758416 cites W2143698439 @default.
- W2079758416 cites W2144512014 @default.
- W2079758416 cites W2148352980 @default.
- W2079758416 cites W2149370230 @default.
- W2079758416 cites W2158029166 @default.
- W2079758416 cites W2163996090 @default.
- W2079758416 cites W2229701631 @default.
- W2079758416 cites W2486823176 @default.
- W2079758416 cites W2905110430 @default.
- W2079758416 cites W3123439476 @default.
- W2079758416 cites W3144881883 @default.
- W2079758416 doi "https://doi.org/10.1007/s00037-007-0230-0" @default.
- W2079758416 hasPublicationYear "2007" @default.
- W2079758416 type Work @default.
- W2079758416 sameAs 2079758416 @default.
- W2079758416 citedByCount "23" @default.
- W2079758416 countsByYear W20797584162012 @default.
- W2079758416 countsByYear W20797584162013 @default.
- W2079758416 countsByYear W20797584162015 @default.
- W2079758416 countsByYear W20797584162018 @default.
- W2079758416 countsByYear W20797584162019 @default.
- W2079758416 countsByYear W20797584162020 @default.
- W2079758416 countsByYear W20797584162021 @default.
- W2079758416 countsByYear W20797584162022 @default.
- W2079758416 crossrefType "journal-article" @default.
- W2079758416 hasAuthorship W2079758416A5002208831 @default.
- W2079758416 hasAuthorship W2079758416A5042076941 @default.
- W2079758416 hasAuthorship W2079758416A5077726785 @default.
- W2079758416 hasBestOaLocation W20797584162 @default.
- W2079758416 hasConcept C102192266 @default.
- W2079758416 hasConcept C108710211 @default.
- W2079758416 hasConcept C114614502 @default.
- W2079758416 hasConcept C118615104 @default.
- W2079758416 hasConcept C121332964 @default.
- W2079758416 hasConcept C122818955 @default.
- W2079758416 hasConcept C132525143 @default.
- W2079758416 hasConcept C134306372 @default.
- W2079758416 hasConcept C138268822 @default.
- W2079758416 hasConcept C154945302 @default.
- W2079758416 hasConcept C160446614 @default.
- W2079758416 hasConcept C18359143 @default.
- W2079758416 hasConcept C24890656 @default.
- W2079758416 hasConcept C2524010 @default.
- W2079758416 hasConcept C2775997480 @default.
- W2079758416 hasConcept C311688 @default.
- W2079758416 hasConcept C33923547 @default.
- W2079758416 hasConcept C40687702 @default.
- W2079758416 hasConcept C41008148 @default.
- W2079758416 hasConcept C47458327 @default.
- W2079758416 hasConcept C77553402 @default.
- W2079758416 hasConcept C80899671 @default.
- W2079758416 hasConceptScore W2079758416C102192266 @default.
- W2079758416 hasConceptScore W2079758416C108710211 @default.
- W2079758416 hasConceptScore W2079758416C114614502 @default.
- W2079758416 hasConceptScore W2079758416C118615104 @default.
- W2079758416 hasConceptScore W2079758416C121332964 @default.
- W2079758416 hasConceptScore W2079758416C122818955 @default.
- W2079758416 hasConceptScore W2079758416C132525143 @default.
- W2079758416 hasConceptScore W2079758416C134306372 @default.
- W2079758416 hasConceptScore W2079758416C138268822 @default.
- W2079758416 hasConceptScore W2079758416C154945302 @default.