Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079759969> ?p ?o ?g. }
Showing items 1 to 69 of
69
with 100 items per page.
- W2079759969 abstract "In this paper we suggest a new general formalism for studying the invariants of polyhedra and manifolds comming from the theory of von Neumann algebras. First, we examine generality in which one may apply the construction of the extended category, which was suggested in the previous publications of the author, using the ideas of P.Freyd. This leads to the notions of a finite von Neumann category and of a trace on such category. Given a finite von Neumann category, we study the extended homology and cohomology theories with values in the extension. Any trace on the initial category produces numerical invariants - the von Neumann dimension and the Novikov - Shubin numbers. Thus, we obtain the local versions of the Novikov - Shubin invariants, localized at different traces. In the abelian case this localization can be made more geometric: we show that any torsion object determines a divisor -- a closed subspace of the space of the parameters. The divisors of torsion objects together with the information produced by the local Novikov - Shubin invariants may be used to study multiplicities of intersections of algebraic and analytic varieties (we discuss here only simple examples demonstrating this possibility). We compute explicitly the divisors and the von Neumann dimensions of the extended cohomology in the real analytic situation. We also give general formulae for the extended cohomology of a mapping torus. Finally, we show how one can define a De Rham version of the extended cohomology and prove a De Rham type theorem." @default.
- W2079759969 created "2016-06-24" @default.
- W2079759969 creator A5036975533 @default.
- W2079759969 date "1996-10-26" @default.
- W2079759969 modified "2023-09-27" @default.
- W2079759969 title "Von Neumann categories and extended $L^2$ cohomology" @default.
- W2079759969 cites W1485609324 @default.
- W2079759969 cites W2002779013 @default.
- W2079759969 cites W2078090245 @default.
- W2079759969 cites W2951153664 @default.
- W2079759969 hasPublicationYear "1996" @default.
- W2079759969 type Work @default.
- W2079759969 sameAs 2079759969 @default.
- W2079759969 citedByCount "5" @default.
- W2079759969 crossrefType "posted-content" @default.
- W2079759969 hasAuthorship W2079759969A5036975533 @default.
- W2079759969 hasConcept C114170632 @default.
- W2079759969 hasConcept C134306372 @default.
- W2079759969 hasConcept C136119220 @default.
- W2079759969 hasConcept C141071460 @default.
- W2079759969 hasConcept C202444582 @default.
- W2079759969 hasConcept C32834561 @default.
- W2079759969 hasConcept C33923547 @default.
- W2079759969 hasConcept C68365058 @default.
- W2079759969 hasConcept C71924100 @default.
- W2079759969 hasConcept C72738302 @default.
- W2079759969 hasConcept C77461463 @default.
- W2079759969 hasConcept C78606066 @default.
- W2079759969 hasConcept C80469333 @default.
- W2079759969 hasConceptScore W2079759969C114170632 @default.
- W2079759969 hasConceptScore W2079759969C134306372 @default.
- W2079759969 hasConceptScore W2079759969C136119220 @default.
- W2079759969 hasConceptScore W2079759969C141071460 @default.
- W2079759969 hasConceptScore W2079759969C202444582 @default.
- W2079759969 hasConceptScore W2079759969C32834561 @default.
- W2079759969 hasConceptScore W2079759969C33923547 @default.
- W2079759969 hasConceptScore W2079759969C68365058 @default.
- W2079759969 hasConceptScore W2079759969C71924100 @default.
- W2079759969 hasConceptScore W2079759969C72738302 @default.
- W2079759969 hasConceptScore W2079759969C77461463 @default.
- W2079759969 hasConceptScore W2079759969C78606066 @default.
- W2079759969 hasConceptScore W2079759969C80469333 @default.
- W2079759969 hasLocation W20797599691 @default.
- W2079759969 hasOpenAccess W2079759969 @default.
- W2079759969 hasPrimaryLocation W20797599691 @default.
- W2079759969 hasRelatedWork W1409871100 @default.
- W2079759969 hasRelatedWork W1490914975 @default.
- W2079759969 hasRelatedWork W1621130646 @default.
- W2079759969 hasRelatedWork W1807325926 @default.
- W2079759969 hasRelatedWork W1988251081 @default.
- W2079759969 hasRelatedWork W2013824808 @default.
- W2079759969 hasRelatedWork W2078090245 @default.
- W2079759969 hasRelatedWork W2121510182 @default.
- W2079759969 hasRelatedWork W2321325568 @default.
- W2079759969 hasRelatedWork W2593412598 @default.
- W2079759969 hasRelatedWork W2884871836 @default.
- W2079759969 hasRelatedWork W2951788322 @default.
- W2079759969 hasRelatedWork W2964051153 @default.
- W2079759969 hasRelatedWork W2997412061 @default.
- W2079759969 hasRelatedWork W3094880938 @default.
- W2079759969 hasRelatedWork W3098541523 @default.
- W2079759969 hasRelatedWork W3102849831 @default.
- W2079759969 hasRelatedWork W3106040102 @default.
- W2079759969 hasRelatedWork W3187202341 @default.
- W2079759969 hasRelatedWork W3152040395 @default.
- W2079759969 isParatext "false" @default.
- W2079759969 isRetracted "false" @default.
- W2079759969 magId "2079759969" @default.
- W2079759969 workType "article" @default.