Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079781666> ?p ?o ?g. }
- W2079781666 endingPage "402" @default.
- W2079781666 startingPage "390" @default.
- W2079781666 abstract "In recent years, coordinate-based meta-analyses have become a powerful and widely used tool to study co-activity across neuroimaging experiments, a development that was supported by the emergence of large-scale neuroimaging databases like BrainMap. However, the evaluation of co-activation patterns is constrained by the fact that previous coordinate-based meta-analysis techniques like Activation Likelihood Estimation (ALE) and Multilevel Kernel Density Analysis (MKDA) reveal all brain regions that show convergent activity within a dataset without taking into account actual within-experiment co-occurrence patterns. To overcome this issue we here propose a novel meta-analytic approach named PaMiNI that utilizes a combination of two well-established data-mining techniques, Gaussian mixture modeling and the Apriori algorithm. By this, PaMiNI enables a data-driven detection of frequent co-activation patterns within neuroimaging datasets. The feasibility of the method is demonstrated by means of several analyses on simulated data as well as a real application. The analyses of the simulated data show that PaMiNI identifies the brain regions underlying the simulated activation foci and perfectly separates the co-activation patterns of the experiments in the simulations. Furthermore, PaMiNI still yields good results when activation foci of distinct brain regions become closer together or if they are non-Gaussian distributed. For the further evaluation, a real dataset on working memory experiments is used, which was previously examined in an ALE meta-analysis and hence allows a cross-validation of both methods. In this latter analysis, PaMiNI revealed a fronto-parietal “core” network of working memory and furthermore indicates a left-lateralization in this network. Finally, to encourage a widespread usage of this new method, the PaMiNI approach was implemented into a publicly available software system." @default.
- W2079781666 created "2016-06-24" @default.
- W2079781666 creator A5002320735 @default.
- W2079781666 creator A5007313280 @default.
- W2079781666 creator A5015304575 @default.
- W2079781666 creator A5087646992 @default.
- W2079781666 creator A5087917940 @default.
- W2079781666 date "2014-04-01" @default.
- W2079781666 modified "2023-09-25" @default.
- W2079781666 title "A novel meta-analytic approach: Mining frequent co-activation patterns in neuroimaging databases" @default.
- W2079781666 cites W1515602587 @default.
- W2079781666 cites W181278426 @default.
- W2079781666 cites W1967950674 @default.
- W2079781666 cites W1968770448 @default.
- W2079781666 cites W1986459850 @default.
- W2079781666 cites W1992562869 @default.
- W2079781666 cites W1996155736 @default.
- W2079781666 cites W1997538961 @default.
- W2079781666 cites W2000697043 @default.
- W2079781666 cites W2002831560 @default.
- W2079781666 cites W2010753269 @default.
- W2079781666 cites W2024726607 @default.
- W2079781666 cites W2026920081 @default.
- W2079781666 cites W2041823554 @default.
- W2079781666 cites W2044491272 @default.
- W2079781666 cites W2049016482 @default.
- W2079781666 cites W2050379871 @default.
- W2079781666 cites W2053651913 @default.
- W2079781666 cites W2061369594 @default.
- W2079781666 cites W2073045674 @default.
- W2079781666 cites W2077021681 @default.
- W2079781666 cites W2078204079 @default.
- W2079781666 cites W2078514039 @default.
- W2079781666 cites W2080624766 @default.
- W2079781666 cites W2086590191 @default.
- W2079781666 cites W2089596781 @default.
- W2079781666 cites W2092369775 @default.
- W2079781666 cites W2100257896 @default.
- W2079781666 cites W2112480903 @default.
- W2079781666 cites W2113595938 @default.
- W2079781666 cites W2124757386 @default.
- W2079781666 cites W2126685399 @default.
- W2079781666 cites W2129624700 @default.
- W2079781666 cites W2134610285 @default.
- W2079781666 cites W2137449272 @default.
- W2079781666 cites W2140255740 @default.
- W2079781666 cites W2140341788 @default.
- W2079781666 cites W2150104440 @default.
- W2079781666 cites W2150606601 @default.
- W2079781666 cites W2164025570 @default.
- W2079781666 cites W2168162876 @default.
- W2079781666 cites W2168175751 @default.
- W2079781666 cites W2169579059 @default.
- W2079781666 cites W3083047557 @default.
- W2079781666 cites W4230920194 @default.
- W2079781666 doi "https://doi.org/10.1016/j.neuroimage.2013.12.024" @default.
- W2079781666 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4981640" @default.
- W2079781666 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24365675" @default.
- W2079781666 hasPublicationYear "2014" @default.
- W2079781666 type Work @default.
- W2079781666 sameAs 2079781666 @default.
- W2079781666 citedByCount "9" @default.
- W2079781666 countsByYear W20797816662014 @default.
- W2079781666 countsByYear W20797816662015 @default.
- W2079781666 countsByYear W20797816662017 @default.
- W2079781666 countsByYear W20797816662022 @default.
- W2079781666 countsByYear W20797816662023 @default.
- W2079781666 crossrefType "journal-article" @default.
- W2079781666 hasAuthorship W2079781666A5002320735 @default.
- W2079781666 hasAuthorship W2079781666A5007313280 @default.
- W2079781666 hasAuthorship W2079781666A5015304575 @default.
- W2079781666 hasAuthorship W2079781666A5087646992 @default.
- W2079781666 hasAuthorship W2079781666A5087917940 @default.
- W2079781666 hasBestOaLocation W20797816662 @default.
- W2079781666 hasConcept C111472728 @default.
- W2079781666 hasConcept C119857082 @default.
- W2079781666 hasConcept C121332964 @default.
- W2079781666 hasConcept C124101348 @default.
- W2079781666 hasConcept C138885662 @default.
- W2079781666 hasConcept C153180895 @default.
- W2079781666 hasConcept C154945302 @default.
- W2079781666 hasConcept C15744967 @default.
- W2079781666 hasConcept C169760540 @default.
- W2079781666 hasConcept C2778755073 @default.
- W2079781666 hasConcept C41008148 @default.
- W2079781666 hasConcept C52338299 @default.
- W2079781666 hasConcept C58693492 @default.
- W2079781666 hasConcept C61224824 @default.
- W2079781666 hasConcept C62520636 @default.
- W2079781666 hasConcept C75553542 @default.
- W2079781666 hasConceptScore W2079781666C111472728 @default.
- W2079781666 hasConceptScore W2079781666C119857082 @default.
- W2079781666 hasConceptScore W2079781666C121332964 @default.
- W2079781666 hasConceptScore W2079781666C124101348 @default.
- W2079781666 hasConceptScore W2079781666C138885662 @default.
- W2079781666 hasConceptScore W2079781666C153180895 @default.
- W2079781666 hasConceptScore W2079781666C154945302 @default.
- W2079781666 hasConceptScore W2079781666C15744967 @default.