Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079784417> ?p ?o ?g. }
- W2079784417 endingPage "245" @default.
- W2079784417 startingPage "235" @default.
- W2079784417 abstract "Agricultural woody residues are available in massive quantities and provide a considerable potential for energy production. However, to encourage environmentally sustainable bioenergy strategies, it is necessary to assess the environmental performance of each specific bioenergy chain. Life cycle assessment (LCA) is recognized to be one of the best methodologies to evaluate the environmental burdens of bioenergy chains. The application of LCA to bioenergy from agricultural residues requires practitioners to make choices on how to interpret agricultural residues (i.e. by-products or co-products) and on how to allocate emissions among the different products generated along the bioenergy chain. These are among the most debated issues in the LCA community, given their potentially large influence on final LCA outcomes. A uniform consensus on these issues is still lacking, and no single method is equally suitable for all solutions. The aim of this paper is to assess how different ways of agricultural residue interpretation and different allocation methods (both of upstream and downstream emissions), affect the environmental performance of bioenergy production fed by agricultural residues. In order to address the issue, we perform a full attributional LCA of the electricity production in a combustion combined heat and power plant (CHP) fed with woody residues from apple orchards (AWRs), as a case study. Bioelectricity production from CHP fed with agricultural residues is a good example of a multifunctional process, since multiple products (e.g. grain, fruit, straw, wood, etc.) and energy (e.g. heat and power) are co-produced along the whole chain. We solve the bioenergy system into two different ways, depending on the interpretation of AWRs as by-products or co-products, and we apply different allocation methods, partitioning the impacts according to different features of the co-products (mass, energy, exergy and economic value). The study focuses on greenhouse gas (GHG) emissions and cumulative energy demand, but other impact categories are investigated as well. The environmental impacts from two conventional fossil fuel systems are used to benchmark the environmental performance of the agricultural bio-energy chain. Our results show how different allocations, and especially allocation choices on upstream processes, can turn a benefit (i.e. a positive saving) to a disadvantage (i.e. an increased impact) and vice versa. Indeed, when AWRs are interpreted as a by-product or when upstream emissions are allocated on an economic base, the bioenergy chain guarantees significant GHG saving (up to 97%), primary energy demand reduction (up to 97%) and lower environmental impacts compared to the Italian non-renewable electricity grid mix. But, in the case of mass allocation of upstream emissions, the savings of GHG emissions and energy requirements drop to only 53% and 56%, respectively, and the figures of the bioenergy systems are similar or even worse than the fossil reference system for the majority of the other impact categories." @default.
- W2079784417 created "2016-06-24" @default.
- W2079784417 creator A5016666944 @default.
- W2079784417 creator A5018615886 @default.
- W2079784417 creator A5056926319 @default.
- W2079784417 creator A5062797162 @default.
- W2079784417 creator A5067110699 @default.
- W2079784417 date "2015-06-01" @default.
- W2079784417 modified "2023-09-23" @default.
- W2079784417 title "Influence of agricultural residues interpretation and allocation procedures on the environmental performance of bioelectricity production – A case study on woodchips from apple orchards" @default.
- W2079784417 cites W1966706512 @default.
- W2079784417 cites W1967003824 @default.
- W2079784417 cites W1968039601 @default.
- W2079784417 cites W1972765874 @default.
- W2079784417 cites W1972803012 @default.
- W2079784417 cites W1983739177 @default.
- W2079784417 cites W1984899454 @default.
- W2079784417 cites W1997350899 @default.
- W2079784417 cites W1997420938 @default.
- W2079784417 cites W2004696154 @default.
- W2079784417 cites W2009205228 @default.
- W2079784417 cites W2024126474 @default.
- W2079784417 cites W2024320694 @default.
- W2079784417 cites W2031212439 @default.
- W2079784417 cites W2031868225 @default.
- W2079784417 cites W2044928702 @default.
- W2079784417 cites W2045771809 @default.
- W2079784417 cites W2045871905 @default.
- W2079784417 cites W2047325604 @default.
- W2079784417 cites W2049313437 @default.
- W2079784417 cites W2050146692 @default.
- W2079784417 cites W2053999210 @default.
- W2079784417 cites W2063453513 @default.
- W2079784417 cites W2064194701 @default.
- W2079784417 cites W2064502214 @default.
- W2079784417 cites W2078980469 @default.
- W2079784417 cites W2083324435 @default.
- W2079784417 cites W2086162610 @default.
- W2079784417 cites W2087003567 @default.
- W2079784417 cites W2088715488 @default.
- W2079784417 cites W2118285491 @default.
- W2079784417 cites W2130599758 @default.
- W2079784417 cites W2139016009 @default.
- W2079784417 cites W2141797890 @default.
- W2079784417 cites W2141964016 @default.
- W2079784417 cites W2154154258 @default.
- W2079784417 cites W2165053916 @default.
- W2079784417 cites W2169520470 @default.
- W2079784417 cites W2315853737 @default.
- W2079784417 cites W3148675660 @default.
- W2079784417 cites W4238974552 @default.
- W2079784417 cites W4379093137 @default.
- W2079784417 doi "https://doi.org/10.1016/j.apenergy.2015.01.109" @default.
- W2079784417 hasPublicationYear "2015" @default.
- W2079784417 type Work @default.
- W2079784417 sameAs 2079784417 @default.
- W2079784417 citedByCount "27" @default.
- W2079784417 countsByYear W20797844172016 @default.
- W2079784417 countsByYear W20797844172017 @default.
- W2079784417 countsByYear W20797844172018 @default.
- W2079784417 countsByYear W20797844172019 @default.
- W2079784417 countsByYear W20797844172020 @default.
- W2079784417 countsByYear W20797844172021 @default.
- W2079784417 countsByYear W20797844172022 @default.
- W2079784417 countsByYear W20797844172023 @default.
- W2079784417 crossrefType "journal-article" @default.
- W2079784417 hasAuthorship W2079784417A5016666944 @default.
- W2079784417 hasAuthorship W2079784417A5018615886 @default.
- W2079784417 hasAuthorship W2079784417A5056926319 @default.
- W2079784417 hasAuthorship W2079784417A5062797162 @default.
- W2079784417 hasAuthorship W2079784417A5067110699 @default.
- W2079784417 hasConcept C118518473 @default.
- W2079784417 hasConcept C127413603 @default.
- W2079784417 hasConcept C134560507 @default.
- W2079784417 hasConcept C139719470 @default.
- W2079784417 hasConcept C144133560 @default.
- W2079784417 hasConcept C156380964 @default.
- W2079784417 hasConcept C162324750 @default.
- W2079784417 hasConcept C18903297 @default.
- W2079784417 hasConcept C2778348673 @default.
- W2079784417 hasConcept C2778706760 @default.
- W2079784417 hasConcept C2778959709 @default.
- W2079784417 hasConcept C39432304 @default.
- W2079784417 hasConcept C53991642 @default.
- W2079784417 hasConcept C548081761 @default.
- W2079784417 hasConcept C86803240 @default.
- W2079784417 hasConcept C88463610 @default.
- W2079784417 hasConceptScore W2079784417C118518473 @default.
- W2079784417 hasConceptScore W2079784417C127413603 @default.
- W2079784417 hasConceptScore W2079784417C134560507 @default.
- W2079784417 hasConceptScore W2079784417C139719470 @default.
- W2079784417 hasConceptScore W2079784417C144133560 @default.
- W2079784417 hasConceptScore W2079784417C156380964 @default.
- W2079784417 hasConceptScore W2079784417C162324750 @default.
- W2079784417 hasConceptScore W2079784417C18903297 @default.
- W2079784417 hasConceptScore W2079784417C2778348673 @default.
- W2079784417 hasConceptScore W2079784417C2778706760 @default.
- W2079784417 hasConceptScore W2079784417C2778959709 @default.