Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079786558> ?p ?o ?g. }
- W2079786558 endingPage "2226" @default.
- W2079786558 startingPage "2217" @default.
- W2079786558 abstract "Electroporation is a physical method of transferring molecules into cells and tissues. It takes advantage of the transient permeabilization of the cell membrane induced by electric field pulses, which gives hydrophilic molecules access to the cytoplasm. This method offers high transfer efficiency for small molecules that freely diffuse through electrically permeabilized membranes. Larger molecules, such as plasmid DNA, face several barriers (plasma membrane, cytoplasmic crowding, and nuclear envelope), which reduce transfection efficiency and engender a complex mechanism of transfer. Our work provides insight into the way electrotransferred DNA crosses the cytoplasm to reach the nucleus. For this purpose, single-particle tracking experiments of fluorescently labeled DNA were performed. Investigations were focused on the involvement of the cytoskeleton using drugs disrupting or stabilizing actin and tubulin filaments as the two relevant cellular networks for particle transport. The analysis of 315 movies (~4,000 trajectories) reveals that DNA is actively transported through the cytoskeleton. The large number of events allows a statistical quantification of the DNA motion kinetics inside the cell. Disruption of both filament types reduces occurrence and velocities of active transport and displacements of DNA particles. Interestingly, stabilization of both networks does not enhance DNA transport. Electroporation is a physical method of transferring molecules into cells and tissues. It takes advantage of the transient permeabilization of the cell membrane induced by electric field pulses, which gives hydrophilic molecules access to the cytoplasm. This method offers high transfer efficiency for small molecules that freely diffuse through electrically permeabilized membranes. Larger molecules, such as plasmid DNA, face several barriers (plasma membrane, cytoplasmic crowding, and nuclear envelope), which reduce transfection efficiency and engender a complex mechanism of transfer. Our work provides insight into the way electrotransferred DNA crosses the cytoplasm to reach the nucleus. For this purpose, single-particle tracking experiments of fluorescently labeled DNA were performed. Investigations were focused on the involvement of the cytoskeleton using drugs disrupting or stabilizing actin and tubulin filaments as the two relevant cellular networks for particle transport. The analysis of 315 movies (~4,000 trajectories) reveals that DNA is actively transported through the cytoskeleton. The large number of events allows a statistical quantification of the DNA motion kinetics inside the cell. Disruption of both filament types reduces occurrence and velocities of active transport and displacements of DNA particles. Interestingly, stabilization of both networks does not enhance DNA transport." @default.
- W2079786558 created "2016-06-24" @default.
- W2079786558 creator A5039294226 @default.
- W2079786558 creator A5039513096 @default.
- W2079786558 creator A5041818863 @default.
- W2079786558 creator A5042741110 @default.
- W2079786558 creator A5065031151 @default.
- W2079786558 creator A5071042344 @default.
- W2079786558 date "2013-12-01" @default.
- W2079786558 modified "2023-10-16" @default.
- W2079786558 title "Intracellular Tracking of Single-plasmid DNA Particles After Delivery by Electroporation" @default.
- W2079786558 cites W1565036272 @default.
- W2079786558 cites W1603724904 @default.
- W2079786558 cites W1880293219 @default.
- W2079786558 cites W1967661753 @default.
- W2079786558 cites W1971124457 @default.
- W2079786558 cites W1972137990 @default.
- W2079786558 cites W1972913617 @default.
- W2079786558 cites W1976874629 @default.
- W2079786558 cites W1990064965 @default.
- W2079786558 cites W1999674600 @default.
- W2079786558 cites W2000479770 @default.
- W2079786558 cites W2012279551 @default.
- W2079786558 cites W2016886514 @default.
- W2079786558 cites W2017925059 @default.
- W2079786558 cites W2022179322 @default.
- W2079786558 cites W2026245994 @default.
- W2079786558 cites W2028356494 @default.
- W2079786558 cites W2028996257 @default.
- W2079786558 cites W2033859483 @default.
- W2079786558 cites W2034110194 @default.
- W2079786558 cites W2039265080 @default.
- W2079786558 cites W2040821061 @default.
- W2079786558 cites W2045225530 @default.
- W2079786558 cites W2046655465 @default.
- W2079786558 cites W2049109647 @default.
- W2079786558 cites W2052738640 @default.
- W2079786558 cites W2054577440 @default.
- W2079786558 cites W2056146261 @default.
- W2079786558 cites W2060410549 @default.
- W2079786558 cites W2062116207 @default.
- W2079786558 cites W2062940443 @default.
- W2079786558 cites W2063635957 @default.
- W2079786558 cites W2066296494 @default.
- W2079786558 cites W2070602462 @default.
- W2079786558 cites W2073622625 @default.
- W2079786558 cites W2076639762 @default.
- W2079786558 cites W2087960497 @default.
- W2079786558 cites W2097565788 @default.
- W2079786558 cites W2128350437 @default.
- W2079786558 cites W2144206175 @default.
- W2079786558 cites W2158229432 @default.
- W2079786558 cites W2162643935 @default.
- W2079786558 cites W2162897213 @default.
- W2079786558 cites W2164143420 @default.
- W2079786558 cites W2164147092 @default.
- W2079786558 cites W2165098812 @default.
- W2079786558 cites W2166612314 @default.
- W2079786558 cites W2170991710 @default.
- W2079786558 cites W3105734471 @default.
- W2079786558 doi "https://doi.org/10.1038/mt.2013.182" @default.
- W2079786558 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3863794" @default.
- W2079786558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23941812" @default.
- W2079786558 hasPublicationYear "2013" @default.
- W2079786558 type Work @default.
- W2079786558 sameAs 2079786558 @default.
- W2079786558 citedByCount "68" @default.
- W2079786558 countsByYear W20797865582014 @default.
- W2079786558 countsByYear W20797865582015 @default.
- W2079786558 countsByYear W20797865582016 @default.
- W2079786558 countsByYear W20797865582017 @default.
- W2079786558 countsByYear W20797865582018 @default.
- W2079786558 countsByYear W20797865582019 @default.
- W2079786558 countsByYear W20797865582020 @default.
- W2079786558 countsByYear W20797865582021 @default.
- W2079786558 countsByYear W20797865582022 @default.
- W2079786558 countsByYear W20797865582023 @default.
- W2079786558 crossrefType "journal-article" @default.
- W2079786558 hasAuthorship W2079786558A5039294226 @default.
- W2079786558 hasAuthorship W2079786558A5039513096 @default.
- W2079786558 hasAuthorship W2079786558A5041818863 @default.
- W2079786558 hasAuthorship W2079786558A5042741110 @default.
- W2079786558 hasAuthorship W2079786558A5065031151 @default.
- W2079786558 hasAuthorship W2079786558A5071042344 @default.
- W2079786558 hasBestOaLocation W20797865581 @default.
- W2079786558 hasConcept C104317684 @default.
- W2079786558 hasConcept C12554922 @default.
- W2079786558 hasConcept C142669718 @default.
- W2079786558 hasConcept C1491633281 @default.
- W2079786558 hasConcept C186852380 @default.
- W2079786558 hasConcept C190062978 @default.
- W2079786558 hasConcept C2778106830 @default.
- W2079786558 hasConcept C41625074 @default.
- W2079786558 hasConcept C552990157 @default.
- W2079786558 hasConcept C55493867 @default.
- W2079786558 hasConcept C86803240 @default.
- W2079786558 hasConcept C95444343 @default.
- W2079786558 hasConceptScore W2079786558C104317684 @default.