Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079786871> ?p ?o ?g. }
- W2079786871 endingPage "20140650" @default.
- W2079786871 startingPage "20140650" @default.
- W2079786871 abstract "Tropical scleractinian corals are particularly vulnerable to global warming as elevated sea surface temperatures (SSTs) disrupt the delicate balance between the coral host and their algal endosymbionts, leading to symbiont expulsion, mass bleaching and mortality. While satellite sensing of SST has proved a reliable predictor of coral bleaching at the regional scale, there are large deviations in bleaching severity and mortality on the local scale that are poorly understood. Here, we show that internal waves play a major role in explaining local coral bleaching and mortality patterns in the Andaman Sea. Despite a severe region-wide SST anomaly in May 2010, frequent upslope intrusions of cold sub-pycnocline waters due to breaking large-amplitude internal waves (LAIW) mitigated coral bleaching and mortality in shallow waters. In LAIW-sheltered waters, by contrast, bleaching-susceptible species suffered severe bleaching and total mortality. These findings suggest that LAIW benefit coral reefs during thermal stress and provide local refugia for bleaching-susceptible corals. LAIW are ubiquitous in tropical stratified waters and their swash zones may thus be important conservation areas for the maintenance of coral diversity in a warming climate. Taking LAIW into account can significantly improve coral bleaching predictions and provide a valuable tool for coral reef conservation and management." @default.
- W2079786871 created "2016-06-24" @default.
- W2079786871 creator A5006953910 @default.
- W2079786871 creator A5012621045 @default.
- W2079786871 creator A5019568436 @default.
- W2079786871 creator A5024956636 @default.
- W2079786871 creator A5083628980 @default.
- W2079786871 creator A5088479173 @default.
- W2079786871 date "2015-01-22" @default.
- W2079786871 modified "2023-10-10" @default.
- W2079786871 title "Large-amplitude internal waves benefit corals during thermal stress" @default.
- W2079786871 cites W1965161636 @default.
- W2079786871 cites W1973638047 @default.
- W2079786871 cites W1978261020 @default.
- W2079786871 cites W1989974377 @default.
- W2079786871 cites W1991462310 @default.
- W2079786871 cites W1994096324 @default.
- W2079786871 cites W1995490102 @default.
- W2079786871 cites W1999650318 @default.
- W2079786871 cites W2005115557 @default.
- W2079786871 cites W2005682886 @default.
- W2079786871 cites W2009023544 @default.
- W2079786871 cites W2011181238 @default.
- W2079786871 cites W2011384206 @default.
- W2079786871 cites W2011435702 @default.
- W2079786871 cites W2017526921 @default.
- W2079786871 cites W2017704291 @default.
- W2079786871 cites W2019309798 @default.
- W2079786871 cites W2019907253 @default.
- W2079786871 cites W2020369047 @default.
- W2079786871 cites W2020610479 @default.
- W2079786871 cites W2021959819 @default.
- W2079786871 cites W2023496514 @default.
- W2079786871 cites W2024763652 @default.
- W2079786871 cites W2025466991 @default.
- W2079786871 cites W2036441830 @default.
- W2079786871 cites W2036760049 @default.
- W2079786871 cites W2037326429 @default.
- W2079786871 cites W2039604026 @default.
- W2079786871 cites W2042308227 @default.
- W2079786871 cites W2042635225 @default.
- W2079786871 cites W2045227535 @default.
- W2079786871 cites W2047036903 @default.
- W2079786871 cites W2049149753 @default.
- W2079786871 cites W2051902375 @default.
- W2079786871 cites W2054735537 @default.
- W2079786871 cites W2065810154 @default.
- W2079786871 cites W2067617388 @default.
- W2079786871 cites W2069864946 @default.
- W2079786871 cites W2071025718 @default.
- W2079786871 cites W2080743295 @default.
- W2079786871 cites W2085955083 @default.
- W2079786871 cites W2086411584 @default.
- W2079786871 cites W2088810375 @default.
- W2079786871 cites W2093303357 @default.
- W2079786871 cites W2094146333 @default.
- W2079786871 cites W2107224678 @default.
- W2079786871 cites W2111124387 @default.
- W2079786871 cites W2120923554 @default.
- W2079786871 cites W2123920115 @default.
- W2079786871 cites W2131118548 @default.
- W2079786871 cites W2133448320 @default.
- W2079786871 cites W2137495061 @default.
- W2079786871 cites W2138263528 @default.
- W2079786871 cites W2139662614 @default.
- W2079786871 cites W2147038227 @default.
- W2079786871 cites W2150523556 @default.
- W2079786871 cites W2151164541 @default.
- W2079786871 cites W2158027428 @default.
- W2079786871 cites W2159400622 @default.
- W2079786871 cites W2162303090 @default.
- W2079786871 cites W2166384331 @default.
- W2079786871 cites W2167829106 @default.
- W2079786871 cites W2168060328 @default.
- W2079786871 cites W2168092021 @default.
- W2079786871 cites W27217073 @default.
- W2079786871 cites W1989087101 @default.
- W2079786871 doi "https://doi.org/10.1098/rspb.2014.0650" @default.
- W2079786871 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/4286055" @default.
- W2079786871 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/25473004" @default.
- W2079786871 hasPublicationYear "2015" @default.
- W2079786871 type Work @default.
- W2079786871 sameAs 2079786871 @default.
- W2079786871 citedByCount "55" @default.
- W2079786871 countsByYear W20797868712015 @default.
- W2079786871 countsByYear W20797868712016 @default.
- W2079786871 countsByYear W20797868712017 @default.
- W2079786871 countsByYear W20797868712018 @default.
- W2079786871 countsByYear W20797868712019 @default.
- W2079786871 countsByYear W20797868712020 @default.
- W2079786871 countsByYear W20797868712021 @default.
- W2079786871 countsByYear W20797868712022 @default.
- W2079786871 countsByYear W20797868712023 @default.
- W2079786871 crossrefType "journal-article" @default.
- W2079786871 hasAuthorship W2079786871A5006953910 @default.
- W2079786871 hasAuthorship W2079786871A5012621045 @default.
- W2079786871 hasAuthorship W2079786871A5019568436 @default.
- W2079786871 hasAuthorship W2079786871A5024956636 @default.