Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079790786> ?p ?o ?g. }
Showing items 1 to 98 of
98
with 100 items per page.
- W2079790786 endingPage "1616" @default.
- W2079790786 startingPage "1605" @default.
- W2079790786 abstract "Several predictive models of aqueous solubility have been published. They have good performances on the data sets which have been used for training the models, but usually these data sets do not contain many structures similar to the structures of interest to the drug research and their applicability in drug hunting is questionable. A very diverse data set has been gathered with compounds issued from literature reports and proprietary compounds. These compounds have been grouped in a so-called literature data set I, a proprietary data set II, and a mixed data set III formed by I and II. About 100 descriptors emphasizing surface properties were calculated for every compound. Bayesian learning of neural nets which cumulates the advantages of neural nets without having their weaknesses was used to select the most parsimonious models and train them, from I, II, and III. The models were established by either selecting the most efficient descriptors one by one using a modified Gram-Schmidt procedure (GS) or by simplifying a most complete model using automatic relevance procedure (ARD). The predictive ability of the models was accessed using validation data sets as much unrelated to the training sets as possible, using two new parameters: NDD(x,ref) the normalized smallest descriptor distance of a compound x to a reference data set and CD(x,mod) the combination of NDD(x,ref) with the dispersion of the Bayesian neural nets calculations. The results show that it is possible to obtain a generic predictive model from database I but that the diversity of database II is too restricted to give a model with good generalization ability and that the ARD method applied to the mixed database III gives the best predictive model." @default.
- W2079790786 created "2016-06-24" @default.
- W2079790786 creator A5044334678 @default.
- W2079790786 date "2001-09-13" @default.
- W2079790786 modified "2023-09-23" @default.
- W2079790786 title "Search for Predictive Generic Model of Aqueous Solubility Using Bayesian Neural Nets" @default.
- W2079790786 cites W1567512734 @default.
- W2079790786 cites W1595796962 @default.
- W2079790786 cites W1967809254 @default.
- W2079790786 cites W1975147762 @default.
- W2079790786 cites W1980019773 @default.
- W2079790786 cites W1980497258 @default.
- W2079790786 cites W1987460555 @default.
- W2079790786 cites W1991292463 @default.
- W2079790786 cites W1992428162 @default.
- W2079790786 cites W1995892465 @default.
- W2079790786 cites W2007697155 @default.
- W2079790786 cites W2010611103 @default.
- W2079790786 cites W2019966295 @default.
- W2079790786 cites W2020375551 @default.
- W2079790786 cites W2022806304 @default.
- W2079790786 cites W2046564413 @default.
- W2079790786 cites W2046653925 @default.
- W2079790786 cites W2080242559 @default.
- W2079790786 cites W2085312881 @default.
- W2079790786 cites W2087394406 @default.
- W2079790786 cites W2089721104 @default.
- W2079790786 cites W2091823093 @default.
- W2079790786 cites W2327511917 @default.
- W2079790786 cites W2952104947 @default.
- W2079790786 doi "https://doi.org/10.1021/ci010363y" @default.
- W2079790786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/11749587" @default.
- W2079790786 hasPublicationYear "2001" @default.
- W2079790786 type Work @default.
- W2079790786 sameAs 2079790786 @default.
- W2079790786 citedByCount "105" @default.
- W2079790786 countsByYear W20797907862012 @default.
- W2079790786 countsByYear W20797907862013 @default.
- W2079790786 countsByYear W20797907862014 @default.
- W2079790786 countsByYear W20797907862015 @default.
- W2079790786 countsByYear W20797907862016 @default.
- W2079790786 countsByYear W20797907862017 @default.
- W2079790786 countsByYear W20797907862021 @default.
- W2079790786 countsByYear W20797907862022 @default.
- W2079790786 crossrefType "journal-article" @default.
- W2079790786 hasAuthorship W2079790786A5044334678 @default.
- W2079790786 hasConcept C107673813 @default.
- W2079790786 hasConcept C119857082 @default.
- W2079790786 hasConcept C124101348 @default.
- W2079790786 hasConcept C154945302 @default.
- W2079790786 hasConcept C158154518 @default.
- W2079790786 hasConcept C164126121 @default.
- W2079790786 hasConcept C164923092 @default.
- W2079790786 hasConcept C169903167 @default.
- W2079790786 hasConcept C177264268 @default.
- W2079790786 hasConcept C17744445 @default.
- W2079790786 hasConcept C199360897 @default.
- W2079790786 hasConcept C199539241 @default.
- W2079790786 hasConcept C41008148 @default.
- W2079790786 hasConcept C50644808 @default.
- W2079790786 hasConcept C58489278 @default.
- W2079790786 hasConceptScore W2079790786C107673813 @default.
- W2079790786 hasConceptScore W2079790786C119857082 @default.
- W2079790786 hasConceptScore W2079790786C124101348 @default.
- W2079790786 hasConceptScore W2079790786C154945302 @default.
- W2079790786 hasConceptScore W2079790786C158154518 @default.
- W2079790786 hasConceptScore W2079790786C164126121 @default.
- W2079790786 hasConceptScore W2079790786C164923092 @default.
- W2079790786 hasConceptScore W2079790786C169903167 @default.
- W2079790786 hasConceptScore W2079790786C177264268 @default.
- W2079790786 hasConceptScore W2079790786C17744445 @default.
- W2079790786 hasConceptScore W2079790786C199360897 @default.
- W2079790786 hasConceptScore W2079790786C199539241 @default.
- W2079790786 hasConceptScore W2079790786C41008148 @default.
- W2079790786 hasConceptScore W2079790786C50644808 @default.
- W2079790786 hasConceptScore W2079790786C58489278 @default.
- W2079790786 hasIssue "6" @default.
- W2079790786 hasLocation W20797907861 @default.
- W2079790786 hasLocation W20797907862 @default.
- W2079790786 hasOpenAccess W2079790786 @default.
- W2079790786 hasPrimaryLocation W20797907861 @default.
- W2079790786 hasRelatedWork W1984369534 @default.
- W2079790786 hasRelatedWork W2014385108 @default.
- W2079790786 hasRelatedWork W2015531258 @default.
- W2079790786 hasRelatedWork W2037802302 @default.
- W2079790786 hasRelatedWork W2065354989 @default.
- W2079790786 hasRelatedWork W2065382687 @default.
- W2079790786 hasRelatedWork W2154177135 @default.
- W2079790786 hasRelatedWork W2372734629 @default.
- W2079790786 hasRelatedWork W3099340263 @default.
- W2079790786 hasRelatedWork W4280583453 @default.
- W2079790786 hasVolume "41" @default.
- W2079790786 isParatext "false" @default.
- W2079790786 isRetracted "false" @default.
- W2079790786 magId "2079790786" @default.
- W2079790786 workType "article" @default.