Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079807871> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2079807871 endingPage "234" @default.
- W2079807871 startingPage "230" @default.
- W2079807871 abstract "Simulating natural organic matter maturation (coalification) is an important topic in organic geochemistry since experiments dating from the beginning of the century. However, because of the lack of an accurate natural reference series of coals, comparative efficiency of different simulation methods has not been tested. In this work, artificial maturation experiments were performed on raw lignites and coal extracts from a homogeneous sample set of increasing maturity (Mahakam Delta, Indonesia). In order to verify the validity of the experimental technique, the agreement between the chemical behaviours of the natural and artificial series was checked by different analytical techniques (C,H,O analysis; reflectance measurements; infrared and NMR spectroscopies; gas chromatography and mass spectrometry of hydrocarbons). (Monthioux et al., 1985, 1986; Landais et al., 1988). Thermal experiments were performed as follows: (1) in a open system, swept by an inert gas where the confinement (inverse of the dead-volume) is nil; (2) in a closed system, in sealed glass tubes where the confinement is intermediate; and (3) in a confined system, in cold-seal pressure autoclaves where the dead volume is minimal. For this last technique which was derived from hydrothermal experiments, 150 to 200 mg of coal were placed in an argon atmosphere inside a thin-walled gold tube (Landais et al., 1989). The gold tube was welded and then introduced in a cold-seal autoclave equipped to exert pressures ranging between 500 and 4000 bars (Fig. 1). Heat treatment temperatures range between 150 and 500°C for 24 hours. The H/C vs. O/C diagram of Figure 2 illustrates from a chemical standpoint the improving effect obtained by using increasing confinement conditions in the natural maturation of a lignite. Only a confined system is able to accurately duplicate the natural model, whereas other techniques quickly fall out of the range of natural coals. Numerous other parameters (evolution of infrared bands, aromaticity factor, reflectance, proportions of different classes of hydrocarbons, etc.) indicate the same conclusion. Thus, the confinement notion is an important parameter in the evolution of organic matter. In our experiments, confinement increase was due to the elevation of the effluents partial pressure. As far as a pyrolysis experiment involving the formation of free radicals, a pressure increase favours bimolecular reactions such as recombination or hydrogenation, whereas monomolecular reactions (unsaturation) are enhanced in open-system pyrolysis. Careful examination of the distribution of hydrocarbons shows that in confined pyrolysis, as well as in natural coalification, hydrogenation reactions are enhanced (Monthioux, 1988). Confined-system pyrolysis gives results comparable to those of natural maturation. Thus they can be applied to investigate the behaviour of different types of organic matter such as oxidized coals during maturation or coalification. It is shown that the behaviour of the end-member of an oxidation series of coals during maturation is roughly comparable to that of an unoxidized reference coal. Nevertheless, it was demonstrated that the hydrocarbon potential that has been lost during oxidation cannot be recovered during subsequent maturation. Artificial coalification of individual coal macerals extracted from the same parent coal also yields interesting results on their respective behaviours during coalification (Landais et al., in press)." @default.
- W2079807871 created "2016-06-24" @default.
- W2079807871 creator A5007317577 @default.
- W2079807871 creator A5051249915 @default.
- W2079807871 creator A5087670180 @default.
- W2079807871 date "1990-12-01" @default.
- W2079807871 modified "2023-09-25" @default.
- W2079807871 title "Simulation of natural coalification by high-pressure pyrolysis" @default.
- W2079807871 cites W1982344007 @default.
- W2079807871 cites W2026327681 @default.
- W2079807871 cites W2043643381 @default.
- W2079807871 cites W2076138818 @default.
- W2079807871 cites W2088126618 @default.
- W2079807871 cites W2507272970 @default.
- W2079807871 doi "https://doi.org/10.1016/0166-5162(90)90048-4" @default.
- W2079807871 hasPublicationYear "1990" @default.
- W2079807871 type Work @default.
- W2079807871 sameAs 2079807871 @default.
- W2079807871 citedByCount "5" @default.
- W2079807871 countsByYear W20798078712013 @default.
- W2079807871 countsByYear W20798078712014 @default.
- W2079807871 countsByYear W20798078712018 @default.
- W2079807871 crossrefType "journal-article" @default.
- W2079807871 hasAuthorship W2079807871A5007317577 @default.
- W2079807871 hasAuthorship W2079807871A5051249915 @default.
- W2079807871 hasAuthorship W2079807871A5087670180 @default.
- W2079807871 hasConcept C113196181 @default.
- W2079807871 hasConcept C121332964 @default.
- W2079807871 hasConcept C127313418 @default.
- W2079807871 hasConcept C156622251 @default.
- W2079807871 hasConcept C159985019 @default.
- W2079807871 hasConcept C165205528 @default.
- W2079807871 hasConcept C178790620 @default.
- W2079807871 hasConcept C185592680 @default.
- W2079807871 hasConcept C191897082 @default.
- W2079807871 hasConcept C192562407 @default.
- W2079807871 hasConcept C199289684 @default.
- W2079807871 hasConcept C20556612 @default.
- W2079807871 hasConcept C2777101687 @default.
- W2079807871 hasConcept C36759035 @default.
- W2079807871 hasConcept C43088074 @default.
- W2079807871 hasConcept C43617362 @default.
- W2079807871 hasConcept C518851703 @default.
- W2079807871 hasConcept C55766333 @default.
- W2079807871 hasConcept C97355855 @default.
- W2079807871 hasConceptScore W2079807871C113196181 @default.
- W2079807871 hasConceptScore W2079807871C121332964 @default.
- W2079807871 hasConceptScore W2079807871C127313418 @default.
- W2079807871 hasConceptScore W2079807871C156622251 @default.
- W2079807871 hasConceptScore W2079807871C159985019 @default.
- W2079807871 hasConceptScore W2079807871C165205528 @default.
- W2079807871 hasConceptScore W2079807871C178790620 @default.
- W2079807871 hasConceptScore W2079807871C185592680 @default.
- W2079807871 hasConceptScore W2079807871C191897082 @default.
- W2079807871 hasConceptScore W2079807871C192562407 @default.
- W2079807871 hasConceptScore W2079807871C199289684 @default.
- W2079807871 hasConceptScore W2079807871C20556612 @default.
- W2079807871 hasConceptScore W2079807871C2777101687 @default.
- W2079807871 hasConceptScore W2079807871C36759035 @default.
- W2079807871 hasConceptScore W2079807871C43088074 @default.
- W2079807871 hasConceptScore W2079807871C43617362 @default.
- W2079807871 hasConceptScore W2079807871C518851703 @default.
- W2079807871 hasConceptScore W2079807871C55766333 @default.
- W2079807871 hasConceptScore W2079807871C97355855 @default.
- W2079807871 hasIssue "1-3" @default.
- W2079807871 hasLocation W20798078711 @default.
- W2079807871 hasOpenAccess W2079807871 @default.
- W2079807871 hasPrimaryLocation W20798078711 @default.
- W2079807871 hasRelatedWork W1258624047 @default.
- W2079807871 hasRelatedWork W1569530272 @default.
- W2079807871 hasRelatedWork W180772278 @default.
- W2079807871 hasRelatedWork W2042501170 @default.
- W2079807871 hasRelatedWork W2079807871 @default.
- W2079807871 hasRelatedWork W2090546400 @default.
- W2079807871 hasRelatedWork W2097433505 @default.
- W2079807871 hasRelatedWork W2243718152 @default.
- W2079807871 hasRelatedWork W2883716547 @default.
- W2079807871 hasRelatedWork W3190768681 @default.
- W2079807871 hasVolume "16" @default.
- W2079807871 isParatext "false" @default.
- W2079807871 isRetracted "false" @default.
- W2079807871 magId "2079807871" @default.
- W2079807871 workType "article" @default.