Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079854042> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2079854042 abstract "We use theta series and modular forms to prove that Z^n is the only integral unimodular lattice of rank n without characteristic vectors of norm <n, i.e. the only integral unimodular lattice not containing a vector w such that (w,w)<n and 2|(v,v+w) for all lattice vectors v. By the work of Kronheimer and others on the Seiberg-Witten equation this yields an alternative proof of a theorem of Donaldson on the geometry of 4-manifolds." @default.
- W2079854042 created "2016-06-24" @default.
- W2079854042 creator A5057239752 @default.
- W2079854042 date "1999-06-02" @default.
- W2079854042 modified "2023-09-23" @default.
- W2079854042 title "A characterization of the Z^n lattice" @default.
- W2079854042 cites W1585954501 @default.
- W2079854042 cites W1783633298 @default.
- W2079854042 cites W1995990042 @default.
- W2079854042 cites W2061721328 @default.
- W2079854042 hasPublicationYear "1999" @default.
- W2079854042 type Work @default.
- W2079854042 sameAs 2079854042 @default.
- W2079854042 citedByCount "1" @default.
- W2079854042 crossrefType "posted-content" @default.
- W2079854042 hasAuthorship W2079854042A5057239752 @default.
- W2079854042 hasConcept C114614502 @default.
- W2079854042 hasConcept C121332964 @default.
- W2079854042 hasConcept C17744445 @default.
- W2079854042 hasConcept C191795146 @default.
- W2079854042 hasConcept C199539241 @default.
- W2079854042 hasConcept C201958917 @default.
- W2079854042 hasConcept C202444582 @default.
- W2079854042 hasConcept C24890656 @default.
- W2079854042 hasConcept C2781204021 @default.
- W2079854042 hasConcept C33923547 @default.
- W2079854042 hasConcept C37914503 @default.
- W2079854042 hasConcept C75764964 @default.
- W2079854042 hasConceptScore W2079854042C114614502 @default.
- W2079854042 hasConceptScore W2079854042C121332964 @default.
- W2079854042 hasConceptScore W2079854042C17744445 @default.
- W2079854042 hasConceptScore W2079854042C191795146 @default.
- W2079854042 hasConceptScore W2079854042C199539241 @default.
- W2079854042 hasConceptScore W2079854042C201958917 @default.
- W2079854042 hasConceptScore W2079854042C202444582 @default.
- W2079854042 hasConceptScore W2079854042C24890656 @default.
- W2079854042 hasConceptScore W2079854042C2781204021 @default.
- W2079854042 hasConceptScore W2079854042C33923547 @default.
- W2079854042 hasConceptScore W2079854042C37914503 @default.
- W2079854042 hasConceptScore W2079854042C75764964 @default.
- W2079854042 hasOpenAccess W2079854042 @default.
- W2079854042 hasRelatedWork W1850598513 @default.
- W2079854042 hasRelatedWork W1966895668 @default.
- W2079854042 hasRelatedWork W1986308130 @default.
- W2079854042 hasRelatedWork W1999519411 @default.
- W2079854042 hasRelatedWork W2034036195 @default.
- W2079854042 hasRelatedWork W2058035718 @default.
- W2079854042 hasRelatedWork W2067160930 @default.
- W2079854042 hasRelatedWork W2107964360 @default.
- W2079854042 hasRelatedWork W2109804260 @default.
- W2079854042 hasRelatedWork W2538456862 @default.
- W2079854042 hasRelatedWork W2611933522 @default.
- W2079854042 hasRelatedWork W2887037484 @default.
- W2079854042 hasRelatedWork W2946581355 @default.
- W2079854042 hasRelatedWork W2950067483 @default.
- W2079854042 hasRelatedWork W2952163804 @default.
- W2079854042 hasRelatedWork W2964048302 @default.
- W2079854042 hasRelatedWork W2964319342 @default.
- W2079854042 hasRelatedWork W3047541664 @default.
- W2079854042 hasRelatedWork W3103357364 @default.
- W2079854042 hasRelatedWork W3161595866 @default.
- W2079854042 isParatext "false" @default.
- W2079854042 isRetracted "false" @default.
- W2079854042 magId "2079854042" @default.
- W2079854042 workType "article" @default.