Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079893016> ?p ?o ?g. }
- W2079893016 endingPage "357" @default.
- W2079893016 startingPage "335" @default.
- W2079893016 abstract "One key problem in computational neuroscience and neural engineering is the identification and modeling of functional connectivity in the brain using spike train data. To reduce model complexity, alleviate overfitting, and thus facilitate model interpretation, sparse representation and estimation of functional connectivity is needed. Sparsities include global sparsity, which captures the sparse connectivities between neurons, and local sparsity, which reflects the active temporal ranges of the input-output dynamical interactions. In this paper, we formulate a generalized functional additive model (GFAM) and develop the associated penalized likelihood estimation methods for such a modeling problem. A GFAM consists of a set of basis functions convolving the input signals, and a link function generating the firing probability of the output neuron from the summation of the convolutions weighted by the sought model coefficients. Model sparsities are achieved by using various penalized likelihood estimations and basis functions. Specifically, we introduce two variations of the GFAM using a global basis (e.g., Laguerre basis) and group LASSO estimation, and a local basis (e.g., B-spline basis) and group bridge estimation, respectively. We further develop an optimization method based on quadratic approximation of the likelihood function for the estimation of these models. Simulation and experimental results show that both group-LASSO-Laguerre and group-bridge-B-spline can capture faithfully the global sparsities, while the latter can replicate accurately and simultaneously both global and local sparsities. The sparse models outperform the full models estimated with the standard maximum likelihood method in out-of-sample predictions." @default.
- W2079893016 created "2016-06-24" @default.
- W2079893016 creator A5014818977 @default.
- W2079893016 creator A5016338405 @default.
- W2079893016 creator A5018388680 @default.
- W2079893016 creator A5026060896 @default.
- W2079893016 creator A5036646017 @default.
- W2079893016 creator A5070732235 @default.
- W2079893016 creator A5073769081 @default.
- W2079893016 date "2013-05-15" @default.
- W2079893016 modified "2023-09-24" @default.
- W2079893016 title "Identification of sparse neural functional connectivity using penalized likelihood estimation and basis functions" @default.
- W2079893016 cites W1482184480 @default.
- W2079893016 cites W1736430329 @default.
- W2079893016 cites W1963766080 @default.
- W2079893016 cites W1971726564 @default.
- W2079893016 cites W1972160853 @default.
- W2079893016 cites W1988051278 @default.
- W2079893016 cites W1988384534 @default.
- W2079893016 cites W1989786687 @default.
- W2079893016 cites W1990420052 @default.
- W2079893016 cites W1991266025 @default.
- W2079893016 cites W1992857614 @default.
- W2079893016 cites W1996990765 @default.
- W2079893016 cites W2001123550 @default.
- W2079893016 cites W2002501563 @default.
- W2079893016 cites W2004241505 @default.
- W2079893016 cites W2049059896 @default.
- W2079893016 cites W2059300492 @default.
- W2079893016 cites W2066009496 @default.
- W2079893016 cites W2069224171 @default.
- W2079893016 cites W2069519142 @default.
- W2079893016 cites W2074818274 @default.
- W2079893016 cites W2076231474 @default.
- W2079893016 cites W2076721070 @default.
- W2079893016 cites W2079775628 @default.
- W2079893016 cites W2079790369 @default.
- W2079893016 cites W2079914348 @default.
- W2079893016 cites W2083714852 @default.
- W2079893016 cites W2089623021 @default.
- W2079893016 cites W2094275057 @default.
- W2079893016 cites W2095112577 @default.
- W2079893016 cites W2095787854 @default.
- W2079893016 cites W2096038694 @default.
- W2079893016 cites W2105728001 @default.
- W2079893016 cites W2106125417 @default.
- W2079893016 cites W2110242299 @default.
- W2079893016 cites W2111592937 @default.
- W2079893016 cites W2112601177 @default.
- W2079893016 cites W2112927743 @default.
- W2079893016 cites W2114771311 @default.
- W2079893016 cites W2116294498 @default.
- W2079893016 cites W2116531552 @default.
- W2079893016 cites W2116687316 @default.
- W2079893016 cites W2117134185 @default.
- W2079893016 cites W2126927871 @default.
- W2079893016 cites W2129983824 @default.
- W2079893016 cites W2133099218 @default.
- W2079893016 cites W2135046866 @default.
- W2079893016 cites W2138019504 @default.
- W2079893016 cites W2142373488 @default.
- W2079893016 cites W2147512414 @default.
- W2079893016 cites W2150908477 @default.
- W2079893016 cites W2153181354 @default.
- W2079893016 cites W2163306439 @default.
- W2079893016 cites W2168175751 @default.
- W2079893016 cites W2168614460 @default.
- W2079893016 cites W2172053542 @default.
- W2079893016 cites W2499601348 @default.
- W2079893016 cites W4301861531 @default.
- W2079893016 doi "https://doi.org/10.1007/s10827-013-0455-7" @default.
- W2079893016 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3805829" @default.
- W2079893016 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/23674048" @default.
- W2079893016 hasPublicationYear "2013" @default.
- W2079893016 type Work @default.
- W2079893016 sameAs 2079893016 @default.
- W2079893016 citedByCount "68" @default.
- W2079893016 countsByYear W20798930162013 @default.
- W2079893016 countsByYear W20798930162014 @default.
- W2079893016 countsByYear W20798930162015 @default.
- W2079893016 countsByYear W20798930162016 @default.
- W2079893016 countsByYear W20798930162017 @default.
- W2079893016 countsByYear W20798930162018 @default.
- W2079893016 countsByYear W20798930162019 @default.
- W2079893016 countsByYear W20798930162020 @default.
- W2079893016 countsByYear W20798930162021 @default.
- W2079893016 countsByYear W20798930162022 @default.
- W2079893016 crossrefType "journal-article" @default.
- W2079893016 hasAuthorship W2079893016A5014818977 @default.
- W2079893016 hasAuthorship W2079893016A5016338405 @default.
- W2079893016 hasAuthorship W2079893016A5018388680 @default.
- W2079893016 hasAuthorship W2079893016A5026060896 @default.
- W2079893016 hasAuthorship W2079893016A5036646017 @default.
- W2079893016 hasAuthorship W2079893016A5070732235 @default.
- W2079893016 hasAuthorship W2079893016A5073769081 @default.
- W2079893016 hasBestOaLocation W20798930162 @default.
- W2079893016 hasConcept C11413529 @default.
- W2079893016 hasConcept C124066611 @default.