Matches in SemOpenAlex for { <https://semopenalex.org/work/W2079893800> ?p ?o ?g. }
- W2079893800 endingPage "172" @default.
- W2079893800 startingPage "172" @default.
- W2079893800 abstract "This article presents how genetic algorithm (GA) can be efficiently used to fuzzy goal programming (FGP) formulation of quadratic bilevel programming problems (QBLPPs) in a hierarchical decision system. In the proposed approach, the concept of tolerance membership functions in fuzzy sets for measuring the achievement of highest membership value (unity) of the defined fuzzy goals of a problem to the extent possible by minimising the under-deviational variables of the defined membership goals on the basis of priorities of achieving the fuzzy goals is considered. In the decision making process, the sensitivity analysis with variations of priority structure of the goals is performed and then the notion of Euclidean distance function is used to identify the appropriate priority structure under which the most satisfactory decision can be reached in the fuzzy decision environment. The potential use of the approach is illustrated by a numerical example." @default.
- W2079893800 created "2016-06-24" @default.
- W2079893800 creator A5001318290 @default.
- W2079893800 creator A5076258481 @default.
- W2079893800 date "2013-01-01" @default.
- W2079893800 modified "2023-10-16" @default.
- W2079893800 title "Using genetic algorithm for solving quadratic bilevel programming problems via fuzzy goal programming" @default.
- W2079893800 cites W1480967763 @default.
- W2079893800 cites W1527514050 @default.
- W2079893800 cites W1554018745 @default.
- W2079893800 cites W1595498733 @default.
- W2079893800 cites W1967403504 @default.
- W2079893800 cites W1967860146 @default.
- W2079893800 cites W1972571373 @default.
- W2079893800 cites W1975360056 @default.
- W2079893800 cites W1976767982 @default.
- W2079893800 cites W1977892833 @default.
- W2079893800 cites W1984555543 @default.
- W2079893800 cites W1988131669 @default.
- W2079893800 cites W199256304 @default.
- W2079893800 cites W1993443192 @default.
- W2079893800 cites W1997364884 @default.
- W2079893800 cites W2000152357 @default.
- W2079893800 cites W2007137127 @default.
- W2079893800 cites W2009649383 @default.
- W2079893800 cites W2011853606 @default.
- W2079893800 cites W2011961835 @default.
- W2079893800 cites W2012724591 @default.
- W2079893800 cites W2018061857 @default.
- W2079893800 cites W2020966680 @default.
- W2079893800 cites W2024111872 @default.
- W2079893800 cites W2032220291 @default.
- W2079893800 cites W2036737894 @default.
- W2079893800 cites W2040158468 @default.
- W2079893800 cites W2040632371 @default.
- W2079893800 cites W2048719588 @default.
- W2079893800 cites W2049433341 @default.
- W2079893800 cites W2054796832 @default.
- W2079893800 cites W2057178439 @default.
- W2079893800 cites W2063280552 @default.
- W2079893800 cites W2066642748 @default.
- W2079893800 cites W2067954977 @default.
- W2079893800 cites W2071183788 @default.
- W2079893800 cites W2080398725 @default.
- W2079893800 cites W2081365408 @default.
- W2079893800 cites W2085427336 @default.
- W2079893800 cites W2089912270 @default.
- W2079893800 cites W2095798353 @default.
- W2079893800 cites W2096126893 @default.
- W2079893800 cites W2096652910 @default.
- W2079893800 cites W2103752539 @default.
- W2079893800 cites W2106333877 @default.
- W2079893800 cites W2106467356 @default.
- W2079893800 cites W2109652537 @default.
- W2079893800 cites W2113938264 @default.
- W2079893800 cites W2125032480 @default.
- W2079893800 cites W2139161988 @default.
- W2079893800 cites W2140145913 @default.
- W2079893800 cites W2171715801 @default.
- W2079893800 cites W2904250082 @default.
- W2079893800 cites W2912565176 @default.
- W2079893800 cites W580032574 @default.
- W2079893800 cites W940193109 @default.
- W2079893800 doi "https://doi.org/10.1504/ijams.2013.053690" @default.
- W2079893800 hasPublicationYear "2013" @default.
- W2079893800 type Work @default.
- W2079893800 sameAs 2079893800 @default.
- W2079893800 citedByCount "19" @default.
- W2079893800 countsByYear W20798938002014 @default.
- W2079893800 countsByYear W20798938002015 @default.
- W2079893800 countsByYear W20798938002016 @default.
- W2079893800 countsByYear W20798938002017 @default.
- W2079893800 countsByYear W20798938002018 @default.
- W2079893800 countsByYear W20798938002020 @default.
- W2079893800 countsByYear W20798938002021 @default.
- W2079893800 countsByYear W20798938002022 @default.
- W2079893800 crossrefType "journal-article" @default.
- W2079893800 hasAuthorship W2079893800A5001318290 @default.
- W2079893800 hasAuthorship W2079893800A5076258481 @default.
- W2079893800 hasConcept C120174047 @default.
- W2079893800 hasConcept C126255220 @default.
- W2079893800 hasConcept C127385683 @default.
- W2079893800 hasConcept C137836250 @default.
- W2079893800 hasConcept C148671577 @default.
- W2079893800 hasConcept C154945302 @default.
- W2079893800 hasConcept C170260401 @default.
- W2079893800 hasConcept C1883856 @default.
- W2079893800 hasConcept C3309286 @default.
- W2079893800 hasConcept C33923547 @default.
- W2079893800 hasConcept C41008148 @default.
- W2079893800 hasConcept C42011625 @default.
- W2079893800 hasConcept C5263885 @default.
- W2079893800 hasConcept C58166 @default.
- W2079893800 hasConcept C61157135 @default.
- W2079893800 hasConcept C81845259 @default.
- W2079893800 hasConcept C8880873 @default.
- W2079893800 hasConceptScore W2079893800C120174047 @default.
- W2079893800 hasConceptScore W2079893800C126255220 @default.