Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080073114> ?p ?o ?g. }
- W2080073114 endingPage "210" @default.
- W2080073114 startingPage "193" @default.
- W2080073114 abstract "Multivariate statistical methods namely, principal component analysis (PCA) and partial least squares (PLS), which perform dimensionality reduction and regression, respectively, are commonly used in batch process modeling and monitoring. While PCA is used to monitor whether process input variables are behaving normally, the PLS is used for predicting values of the process output variables. A significant drawback of the PLS is that it is a linear regression formalism and thus makes poor predictions when relationships between process inputs and outputs are nonlinear. For overcoming this drawback, a formalism integrating PCA and generalized regression neural networks (GRNNs) is introduced in this paper for conducting batch process modeling and monitoring. The advantages of this PCA-GRNN hybrid methodology are (i) process outputs can be predicted accurately even when input–output relationships are nonlinear, and (ii) unlike other commonly used artificial neural network (ANNs) paradigms (such as the multi-layer perceptron), training of a GRNN is a one-step procedure, which helps in faster development of nonlinear input–output models. A two-module software package has been developed for implementing the PCA-GRNN formalism and the effectiveness of the proposed modeling and monitoring formalism has been successfully demonstrated by conducting two case studies involving penicillin production and protein synthesis." @default.
- W2080073114 created "2016-06-24" @default.
- W2080073114 creator A5002837520 @default.
- W2080073114 creator A5032077355 @default.
- W2080073114 creator A5063771906 @default.
- W2080073114 creator A5067826619 @default.
- W2080073114 creator A5088697411 @default.
- W2080073114 date "2004-06-01" @default.
- W2080073114 modified "2023-10-17" @default.
- W2080073114 title "Modeling and monitoring of batch processes using principal component analysis (PCA) assisted generalized regression neural networks (GRNN)" @default.
- W2080073114 cites W1498436455 @default.
- W2080073114 cites W163867340 @default.
- W2080073114 cites W195815859 @default.
- W2080073114 cites W1967033182 @default.
- W2080073114 cites W1970565927 @default.
- W2080073114 cites W1979947413 @default.
- W2080073114 cites W1985995825 @default.
- W2080073114 cites W1992301222 @default.
- W2080073114 cites W1995686069 @default.
- W2080073114 cites W2000858991 @default.
- W2080073114 cites W2003766815 @default.
- W2080073114 cites W2004241732 @default.
- W2080073114 cites W2004694841 @default.
- W2080073114 cites W2009270776 @default.
- W2080073114 cites W2010922160 @default.
- W2080073114 cites W2015454007 @default.
- W2080073114 cites W2021343643 @default.
- W2080073114 cites W2035514680 @default.
- W2080073114 cites W2042353944 @default.
- W2080073114 cites W2044602969 @default.
- W2080073114 cites W2062927278 @default.
- W2080073114 cites W2078508456 @default.
- W2080073114 cites W2089468765 @default.
- W2080073114 cites W2141557757 @default.
- W2080073114 cites W2143908786 @default.
- W2080073114 cites W2149723649 @default.
- W2080073114 cites W2158863190 @default.
- W2080073114 cites W2164755285 @default.
- W2080073114 cites W2171935366 @default.
- W2080073114 cites W4252531271 @default.
- W2080073114 cites W56434051 @default.
- W2080073114 doi "https://doi.org/10.1016/j.bej.2003.08.009" @default.
- W2080073114 hasPublicationYear "2004" @default.
- W2080073114 type Work @default.
- W2080073114 sameAs 2080073114 @default.
- W2080073114 citedByCount "85" @default.
- W2080073114 countsByYear W20800731142012 @default.
- W2080073114 countsByYear W20800731142013 @default.
- W2080073114 countsByYear W20800731142014 @default.
- W2080073114 countsByYear W20800731142015 @default.
- W2080073114 countsByYear W20800731142016 @default.
- W2080073114 countsByYear W20800731142017 @default.
- W2080073114 countsByYear W20800731142018 @default.
- W2080073114 countsByYear W20800731142019 @default.
- W2080073114 countsByYear W20800731142020 @default.
- W2080073114 countsByYear W20800731142021 @default.
- W2080073114 countsByYear W20800731142022 @default.
- W2080073114 countsByYear W20800731142023 @default.
- W2080073114 crossrefType "journal-article" @default.
- W2080073114 hasAuthorship W2080073114A5002837520 @default.
- W2080073114 hasAuthorship W2080073114A5032077355 @default.
- W2080073114 hasAuthorship W2080073114A5063771906 @default.
- W2080073114 hasAuthorship W2080073114A5067826619 @default.
- W2080073114 hasAuthorship W2080073114A5088697411 @default.
- W2080073114 hasConcept C105795698 @default.
- W2080073114 hasConcept C111030470 @default.
- W2080073114 hasConcept C119857082 @default.
- W2080073114 hasConcept C121332964 @default.
- W2080073114 hasConcept C124101348 @default.
- W2080073114 hasConcept C152877465 @default.
- W2080073114 hasConcept C153180895 @default.
- W2080073114 hasConcept C154945302 @default.
- W2080073114 hasConcept C158622935 @default.
- W2080073114 hasConcept C161584116 @default.
- W2080073114 hasConcept C22354355 @default.
- W2080073114 hasConcept C27438332 @default.
- W2080073114 hasConcept C33923547 @default.
- W2080073114 hasConcept C41008148 @default.
- W2080073114 hasConcept C46889948 @default.
- W2080073114 hasConcept C48921125 @default.
- W2080073114 hasConcept C50644808 @default.
- W2080073114 hasConcept C60908668 @default.
- W2080073114 hasConcept C62520636 @default.
- W2080073114 hasConcept C70518039 @default.
- W2080073114 hasConcept C74887250 @default.
- W2080073114 hasConcept C83546350 @default.
- W2080073114 hasConceptScore W2080073114C105795698 @default.
- W2080073114 hasConceptScore W2080073114C111030470 @default.
- W2080073114 hasConceptScore W2080073114C119857082 @default.
- W2080073114 hasConceptScore W2080073114C121332964 @default.
- W2080073114 hasConceptScore W2080073114C124101348 @default.
- W2080073114 hasConceptScore W2080073114C152877465 @default.
- W2080073114 hasConceptScore W2080073114C153180895 @default.
- W2080073114 hasConceptScore W2080073114C154945302 @default.
- W2080073114 hasConceptScore W2080073114C158622935 @default.
- W2080073114 hasConceptScore W2080073114C161584116 @default.
- W2080073114 hasConceptScore W2080073114C22354355 @default.
- W2080073114 hasConceptScore W2080073114C27438332 @default.