Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080130286> ?p ?o ?g. }
- W2080130286 endingPage "424" @default.
- W2080130286 startingPage "415" @default.
- W2080130286 abstract "The singular value decomposition is among the most useful and widespread tools in linear algebra. Often in engineering a multitude of matrices with common latent structure are available. Suppose we have a set of matrices for which we wish to find two orthogonal matrices and such that all products are as close as possible to rectangular diagonal form. We show that the problem can be solved efficiently by iterating either power iterations followed by an orthogonalization process or Givens rotations. The two proposed algorithms can be seen as a generalization of approximate joint diagonalization (AJD) algorithms to the bilinear orthogonal forms. Indeed, if the input matrices are symmetric and , the optimization problem reduces to that of orthogonal AJD. The effectiveness of the algorithms is shown with numerical simulations and the analysis of a large database of 84 electroencephalographic recordings. The proposed algorithms open the road to new applications of the blind source separation framework, of which we give some example for electroencephalographic data." @default.
- W2080130286 created "2016-06-24" @default.
- W2080130286 creator A5010296747 @default.
- W2080130286 creator A5045389689 @default.
- W2080130286 creator A5076161191 @default.
- W2080130286 date "2011-01-01" @default.
- W2080130286 modified "2023-10-16" @default.
- W2080130286 title "Approximate Joint Singular Value Decomposition of an Asymmetric Rectangular Matrix Set" @default.
- W2080130286 cites W1489793438 @default.
- W2080130286 cites W1566057142 @default.
- W2080130286 cites W1859934687 @default.
- W2080130286 cites W1977067929 @default.
- W2080130286 cites W1983821361 @default.
- W2080130286 cites W1984015682 @default.
- W2080130286 cites W1989581163 @default.
- W2080130286 cites W1995560543 @default.
- W2080130286 cites W1996957758 @default.
- W2080130286 cites W2004026774 @default.
- W2080130286 cites W2019543362 @default.
- W2080130286 cites W2032616368 @default.
- W2080130286 cites W2047851817 @default.
- W2080130286 cites W2081689238 @default.
- W2080130286 cites W2087089000 @default.
- W2080130286 cites W2095950579 @default.
- W2080130286 cites W2106822551 @default.
- W2080130286 cites W2112220340 @default.
- W2080130286 cites W2124757684 @default.
- W2080130286 cites W2132499607 @default.
- W2080130286 cites W2135526217 @default.
- W2080130286 cites W2142638745 @default.
- W2080130286 cites W2144935618 @default.
- W2080130286 cites W2150743271 @default.
- W2080130286 cites W2152502807 @default.
- W2080130286 cites W2154488158 @default.
- W2080130286 cites W2155599429 @default.
- W2080130286 cites W2157050350 @default.
- W2080130286 cites W2161566590 @default.
- W2080130286 cites W2169183548 @default.
- W2080130286 cites W4205778870 @default.
- W2080130286 doi "https://doi.org/10.1109/tsp.2010.2087018" @default.
- W2080130286 hasPublicationYear "2011" @default.
- W2080130286 type Work @default.
- W2080130286 sameAs 2080130286 @default.
- W2080130286 citedByCount "27" @default.
- W2080130286 countsByYear W20801302862012 @default.
- W2080130286 countsByYear W20801302862013 @default.
- W2080130286 countsByYear W20801302862014 @default.
- W2080130286 countsByYear W20801302862015 @default.
- W2080130286 countsByYear W20801302862016 @default.
- W2080130286 countsByYear W20801302862017 @default.
- W2080130286 countsByYear W20801302862018 @default.
- W2080130286 countsByYear W20801302862019 @default.
- W2080130286 countsByYear W20801302862020 @default.
- W2080130286 countsByYear W20801302862021 @default.
- W2080130286 countsByYear W20801302862022 @default.
- W2080130286 crossrefType "journal-article" @default.
- W2080130286 hasAuthorship W2080130286A5010296747 @default.
- W2080130286 hasAuthorship W2080130286A5045389689 @default.
- W2080130286 hasAuthorship W2080130286A5076161191 @default.
- W2080130286 hasBestOaLocation W20801302862 @default.
- W2080130286 hasConcept C106487976 @default.
- W2080130286 hasConcept C109282560 @default.
- W2080130286 hasConcept C113313756 @default.
- W2080130286 hasConcept C11413529 @default.
- W2080130286 hasConcept C121332964 @default.
- W2080130286 hasConcept C126255220 @default.
- W2080130286 hasConcept C130367717 @default.
- W2080130286 hasConcept C134306372 @default.
- W2080130286 hasConcept C158693339 @default.
- W2080130286 hasConcept C159985019 @default.
- W2080130286 hasConcept C17137986 @default.
- W2080130286 hasConcept C177148314 @default.
- W2080130286 hasConcept C187064257 @default.
- W2080130286 hasConcept C192562407 @default.
- W2080130286 hasConcept C22789450 @default.
- W2080130286 hasConcept C2524010 @default.
- W2080130286 hasConcept C28826006 @default.
- W2080130286 hasConcept C33923547 @default.
- W2080130286 hasConcept C41008148 @default.
- W2080130286 hasConcept C42355184 @default.
- W2080130286 hasConcept C44292817 @default.
- W2080130286 hasConcept C47559304 @default.
- W2080130286 hasConcept C62520636 @default.
- W2080130286 hasConceptScore W2080130286C106487976 @default.
- W2080130286 hasConceptScore W2080130286C109282560 @default.
- W2080130286 hasConceptScore W2080130286C113313756 @default.
- W2080130286 hasConceptScore W2080130286C11413529 @default.
- W2080130286 hasConceptScore W2080130286C121332964 @default.
- W2080130286 hasConceptScore W2080130286C126255220 @default.
- W2080130286 hasConceptScore W2080130286C130367717 @default.
- W2080130286 hasConceptScore W2080130286C134306372 @default.
- W2080130286 hasConceptScore W2080130286C158693339 @default.
- W2080130286 hasConceptScore W2080130286C159985019 @default.
- W2080130286 hasConceptScore W2080130286C17137986 @default.
- W2080130286 hasConceptScore W2080130286C177148314 @default.
- W2080130286 hasConceptScore W2080130286C187064257 @default.
- W2080130286 hasConceptScore W2080130286C192562407 @default.
- W2080130286 hasConceptScore W2080130286C22789450 @default.