Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080174242> ?p ?o ?g. }
Showing items 1 to 80 of
80
with 100 items per page.
- W2080174242 endingPage "298" @default.
- W2080174242 startingPage "277" @default.
- W2080174242 abstract "The main problem under study is the construction of the complete convergent series development of integral transforms of the kind ∫0+∞f(t)G(xt)dt, x∈R, in which f(t) is known to have a convergent or asymptotic series expansion valid for sufficiently large positive t and G(t) a convergent or asymptotic series expansion valid for sufficiently small positive t, both series mainly consisting of integer or non-integer powers of t. Complementary to this problem is the formulation of associated convergence criterions. In the past, this subject was treated to some extent by Grosjean in the case of Fourier transforms of the sine and the cosine type, and by Vanderleen in the case of Hankel transforms. In the present study, the kernel function G is left arbitrary apart from the specification of the form of its series development in a positive neighbourhood of the origin. In Section 1, the utility of the series expansion of integral transforms is illustrated by means of two examples taken from mathematical physics and references to other examples belonging to different scientific disciplines are given. In Section 2, three expansions theorems and the convergence criterions associated with two of them which were proven resp. by Grosjean and by Vanderleen are recalled in order to facilitate the description of the scope of the set of new articles which will be devoted to the subject. Finally, Section 3 deals with a first generalized series expansion theorem. The generalized moments of f and G appearing in the coefficients are transformed into more tractable integrals under conditions which are usually fulfilled in practice. This leads to a modified version of the first expansion theorem slightly less general than in its original formulation, but better suited for practical application." @default.
- W2080174242 created "2016-06-24" @default.
- W2080174242 creator A5025060418 @default.
- W2080174242 creator A5048389193 @default.
- W2080174242 date "1985-05-01" @default.
- W2080174242 modified "2023-10-18" @default.
- W2080174242 title "On the series expansion of certain types of integral transforms—Part I" @default.
- W2080174242 cites W1974526914 @default.
- W2080174242 cites W1974838408 @default.
- W2080174242 cites W1992026678 @default.
- W2080174242 cites W2089623511 @default.
- W2080174242 doi "https://doi.org/10.1016/0377-0427(85)90025-1" @default.
- W2080174242 hasPublicationYear "1985" @default.
- W2080174242 type Work @default.
- W2080174242 sameAs 2080174242 @default.
- W2080174242 citedByCount "2" @default.
- W2080174242 crossrefType "journal-article" @default.
- W2080174242 hasAuthorship W2080174242A5025060418 @default.
- W2080174242 hasAuthorship W2080174242A5048389193 @default.
- W2080174242 hasBestOaLocation W20801742421 @default.
- W2080174242 hasConcept C1115519 @default.
- W2080174242 hasConcept C112698675 @default.
- W2080174242 hasConcept C11683690 @default.
- W2080174242 hasConcept C134306372 @default.
- W2080174242 hasConcept C143724316 @default.
- W2080174242 hasConcept C144133560 @default.
- W2080174242 hasConcept C151730666 @default.
- W2080174242 hasConcept C162324750 @default.
- W2080174242 hasConcept C186080144 @default.
- W2080174242 hasConcept C195597517 @default.
- W2080174242 hasConcept C199360897 @default.
- W2080174242 hasConcept C202444582 @default.
- W2080174242 hasConcept C2777303404 @default.
- W2080174242 hasConcept C2780129039 @default.
- W2080174242 hasConcept C33923547 @default.
- W2080174242 hasConcept C41008148 @default.
- W2080174242 hasConcept C50522688 @default.
- W2080174242 hasConcept C73905626 @default.
- W2080174242 hasConcept C86803240 @default.
- W2080174242 hasConcept C97137487 @default.
- W2080174242 hasConceptScore W2080174242C1115519 @default.
- W2080174242 hasConceptScore W2080174242C112698675 @default.
- W2080174242 hasConceptScore W2080174242C11683690 @default.
- W2080174242 hasConceptScore W2080174242C134306372 @default.
- W2080174242 hasConceptScore W2080174242C143724316 @default.
- W2080174242 hasConceptScore W2080174242C144133560 @default.
- W2080174242 hasConceptScore W2080174242C151730666 @default.
- W2080174242 hasConceptScore W2080174242C162324750 @default.
- W2080174242 hasConceptScore W2080174242C186080144 @default.
- W2080174242 hasConceptScore W2080174242C195597517 @default.
- W2080174242 hasConceptScore W2080174242C199360897 @default.
- W2080174242 hasConceptScore W2080174242C202444582 @default.
- W2080174242 hasConceptScore W2080174242C2777303404 @default.
- W2080174242 hasConceptScore W2080174242C2780129039 @default.
- W2080174242 hasConceptScore W2080174242C33923547 @default.
- W2080174242 hasConceptScore W2080174242C41008148 @default.
- W2080174242 hasConceptScore W2080174242C50522688 @default.
- W2080174242 hasConceptScore W2080174242C73905626 @default.
- W2080174242 hasConceptScore W2080174242C86803240 @default.
- W2080174242 hasConceptScore W2080174242C97137487 @default.
- W2080174242 hasLocation W20801742421 @default.
- W2080174242 hasOpenAccess W2080174242 @default.
- W2080174242 hasPrimaryLocation W20801742421 @default.
- W2080174242 hasRelatedWork W1909086734 @default.
- W2080174242 hasRelatedWork W1983623601 @default.
- W2080174242 hasRelatedWork W1999015370 @default.
- W2080174242 hasRelatedWork W2021201630 @default.
- W2080174242 hasRelatedWork W2072690751 @default.
- W2080174242 hasRelatedWork W2384104162 @default.
- W2080174242 hasRelatedWork W2566221162 @default.
- W2080174242 hasRelatedWork W2891064742 @default.
- W2080174242 hasRelatedWork W4240355644 @default.
- W2080174242 hasRelatedWork W2213143011 @default.
- W2080174242 hasVolume "12-13" @default.
- W2080174242 isParatext "false" @default.
- W2080174242 isRetracted "false" @default.
- W2080174242 magId "2080174242" @default.
- W2080174242 workType "article" @default.