Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080188430> ?p ?o ?g. }
Showing items 1 to 65 of
65
with 100 items per page.
- W2080188430 endingPage "306" @default.
- W2080188430 startingPage "297" @default.
- W2080188430 abstract "Forr≧2 letp(n, r) denote the maximum cardinality of a subsetA ofN={1, 2,...,n} such that there are noB⊂A and an integery with $$mathop sum limits_{b in B} b = y^r $$ b=y r. It is shown that for anyε>0 andn>n(ε), (1+o(1))21/(r+1) n (r−1)/(r+1)≦p(n, r)≦n ɛ+2/3 for allr≦5, and that for every fixedr≧6,p(n, r)=(1+o(1))·21/(r+1) n (r−1)/(r+1) asn→∞. Letf(n, m) denote the maximum cardinality of a subsetA ofN such that there is noB⊂A the sum of whose elements ism. It is proved that for 3n 6/3+ɛ≦m≦n 2/20 log2 n andn>n(ε), f(n, m)=[n/s]+s−2, wheres is the smallest integer that does not dividem. A special case of this result establishes a conjecture of Erdős and Graham." @default.
- W2080188430 created "2016-06-24" @default.
- W2080188430 creator A5066892511 @default.
- W2080188430 creator A5083469386 @default.
- W2080188430 date "1988-12-01" @default.
- W2080188430 modified "2023-09-26" @default.
- W2080188430 title "On sums of subsets of a set of integers" @default.
- W2080188430 cites W2045789201 @default.
- W2080188430 cites W2148695585 @default.
- W2080188430 cites W4206899940 @default.
- W2080188430 doi "https://doi.org/10.1007/bf02189086" @default.
- W2080188430 hasPublicationYear "1988" @default.
- W2080188430 type Work @default.
- W2080188430 sameAs 2080188430 @default.
- W2080188430 citedByCount "32" @default.
- W2080188430 countsByYear W20801884302015 @default.
- W2080188430 countsByYear W20801884302018 @default.
- W2080188430 countsByYear W20801884302019 @default.
- W2080188430 countsByYear W20801884302020 @default.
- W2080188430 countsByYear W20801884302021 @default.
- W2080188430 countsByYear W20801884302022 @default.
- W2080188430 crossrefType "journal-article" @default.
- W2080188430 hasAuthorship W2080188430A5066892511 @default.
- W2080188430 hasAuthorship W2080188430A5083469386 @default.
- W2080188430 hasBestOaLocation W20801884302 @default.
- W2080188430 hasConcept C114614502 @default.
- W2080188430 hasConcept C118615104 @default.
- W2080188430 hasConcept C124101348 @default.
- W2080188430 hasConcept C199360897 @default.
- W2080188430 hasConcept C2780990831 @default.
- W2080188430 hasConcept C33923547 @default.
- W2080188430 hasConcept C41008148 @default.
- W2080188430 hasConcept C87117476 @default.
- W2080188430 hasConcept C97137487 @default.
- W2080188430 hasConceptScore W2080188430C114614502 @default.
- W2080188430 hasConceptScore W2080188430C118615104 @default.
- W2080188430 hasConceptScore W2080188430C124101348 @default.
- W2080188430 hasConceptScore W2080188430C199360897 @default.
- W2080188430 hasConceptScore W2080188430C2780990831 @default.
- W2080188430 hasConceptScore W2080188430C33923547 @default.
- W2080188430 hasConceptScore W2080188430C41008148 @default.
- W2080188430 hasConceptScore W2080188430C87117476 @default.
- W2080188430 hasConceptScore W2080188430C97137487 @default.
- W2080188430 hasIssue "4" @default.
- W2080188430 hasLocation W20801884301 @default.
- W2080188430 hasLocation W20801884302 @default.
- W2080188430 hasOpenAccess W2080188430 @default.
- W2080188430 hasPrimaryLocation W20801884301 @default.
- W2080188430 hasRelatedWork W1496332508 @default.
- W2080188430 hasRelatedWork W1669726956 @default.
- W2080188430 hasRelatedWork W1969178215 @default.
- W2080188430 hasRelatedWork W1972327406 @default.
- W2080188430 hasRelatedWork W1980752991 @default.
- W2080188430 hasRelatedWork W2014729764 @default.
- W2080188430 hasRelatedWork W2080188430 @default.
- W2080188430 hasRelatedWork W2093922095 @default.
- W2080188430 hasRelatedWork W2766266553 @default.
- W2080188430 hasRelatedWork W2950756227 @default.
- W2080188430 hasVolume "8" @default.
- W2080188430 isParatext "false" @default.
- W2080188430 isRetracted "false" @default.
- W2080188430 magId "2080188430" @default.
- W2080188430 workType "article" @default.