Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080232486> ?p ?o ?g. }
Showing items 1 to 68 of
68
with 100 items per page.
- W2080232486 endingPage "97" @default.
- W2080232486 startingPage "97" @default.
- W2080232486 abstract "1. Among the classic theorems concerning the proj ective properties of a pair of conics, perhaps the most interesting is one due to Poncelet, viz. the theorem that if a polygon of n sides can be circumscribed about one conic and at the same time inscribed in a second conic, it is possible to construct an infinite number of such polygons for the given pair of conics. A very elegant demonstration of this theorem may be made by the use of elliptic functions, but a parallel algebraic treatment is also possible. From an algebraic point of view, we have here but one example of a certain interesting class of problems in elimination. We shall mention the general algebraic problem, but shall carry through the details only in the hyperelliptic case. Except in so far as is necessary to make the algebraic steps clear no discussion will be -made of the numerous geometric corollaries that suggest themselves. The present treatment is an attempt to reduce the problem to its simplest form and to prove the theorems needed with a minimum of algebraic machinery. Little emphasis is placed upon the numerous features which serve to individualize the elliptic within the general hyperelliptic problem. The functions considered are those well-known in the transcendental theory, although the methods of proof are of necessity largely new. Constant use has been made of the remarkably clearly written Traite des Fonctions Elliptiques by Halphen. It should be noted that not only are the operations used in this paper algebraic, but that except for a single irrationality, it, every step is essentially rational. Neither the notions of geometric continuity nor of convergence of series are required at any stage. Thus the present discussion is applicable in its entirety to finite fields, a statement which does not hold true of the algebraic treatments already published. Extensive references to the literature on the problem of closure in the elliptic case may be found in the Encyklopddie der Math. Wiss., III, C 1, p. 45 ff., the Encyk. der Geometrie (Simon), p. 105 ff. and in Pascal's Repertorium, IIF, p. 238 ff. Modern algebraic treatments of the Poncelet Polygons are given by 97" @default.
- W2080232486 created "2016-06-24" @default.
- W2080232486 creator A5032259004 @default.
- W2080232486 date "1914-01-01" @default.
- W2080232486 modified "2023-09-26" @default.
- W2080232486 title "An Algebraic Treatment of the Theorem of Closure" @default.
- W2080232486 doi "https://doi.org/10.2307/1968050" @default.
- W2080232486 hasPublicationYear "1914" @default.
- W2080232486 type Work @default.
- W2080232486 sameAs 2080232486 @default.
- W2080232486 citedByCount "3" @default.
- W2080232486 countsByYear W20802324862013 @default.
- W2080232486 countsByYear W20802324862016 @default.
- W2080232486 crossrefType "journal-article" @default.
- W2080232486 hasAuthorship W2080232486A5032259004 @default.
- W2080232486 hasBestOaLocation W20802324862 @default.
- W2080232486 hasConcept C134306372 @default.
- W2080232486 hasConcept C136119220 @default.
- W2080232486 hasConcept C146834321 @default.
- W2080232486 hasConcept C17744445 @default.
- W2080232486 hasConcept C182327082 @default.
- W2080232486 hasConcept C186219872 @default.
- W2080232486 hasConcept C199343813 @default.
- W2080232486 hasConcept C199539241 @default.
- W2080232486 hasConcept C202444582 @default.
- W2080232486 hasConcept C2777686260 @default.
- W2080232486 hasConcept C33923547 @default.
- W2080232486 hasConcept C51544822 @default.
- W2080232486 hasConcept C71924100 @default.
- W2080232486 hasConcept C78045399 @default.
- W2080232486 hasConcept C9376300 @default.
- W2080232486 hasConceptScore W2080232486C134306372 @default.
- W2080232486 hasConceptScore W2080232486C136119220 @default.
- W2080232486 hasConceptScore W2080232486C146834321 @default.
- W2080232486 hasConceptScore W2080232486C17744445 @default.
- W2080232486 hasConceptScore W2080232486C182327082 @default.
- W2080232486 hasConceptScore W2080232486C186219872 @default.
- W2080232486 hasConceptScore W2080232486C199343813 @default.
- W2080232486 hasConceptScore W2080232486C199539241 @default.
- W2080232486 hasConceptScore W2080232486C202444582 @default.
- W2080232486 hasConceptScore W2080232486C2777686260 @default.
- W2080232486 hasConceptScore W2080232486C33923547 @default.
- W2080232486 hasConceptScore W2080232486C51544822 @default.
- W2080232486 hasConceptScore W2080232486C71924100 @default.
- W2080232486 hasConceptScore W2080232486C78045399 @default.
- W2080232486 hasConceptScore W2080232486C9376300 @default.
- W2080232486 hasIssue "1/4" @default.
- W2080232486 hasLocation W20802324861 @default.
- W2080232486 hasLocation W20802324862 @default.
- W2080232486 hasOpenAccess W2080232486 @default.
- W2080232486 hasPrimaryLocation W20802324861 @default.
- W2080232486 hasRelatedWork W1499678952 @default.
- W2080232486 hasRelatedWork W1544754923 @default.
- W2080232486 hasRelatedWork W2021839100 @default.
- W2080232486 hasRelatedWork W2039457274 @default.
- W2080232486 hasRelatedWork W2072563731 @default.
- W2080232486 hasRelatedWork W2576362137 @default.
- W2080232486 hasRelatedWork W2963983929 @default.
- W2080232486 hasRelatedWork W4286968716 @default.
- W2080232486 hasRelatedWork W4287125868 @default.
- W2080232486 hasRelatedWork W4297798649 @default.
- W2080232486 hasVolume "16" @default.
- W2080232486 isParatext "false" @default.
- W2080232486 isRetracted "false" @default.
- W2080232486 magId "2080232486" @default.
- W2080232486 workType "article" @default.