Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080243363> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W2080243363 endingPage "763" @default.
- W2080243363 startingPage "751" @default.
- W2080243363 abstract "A strongly continuous semigroup of bounded linear operators <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>T(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than-or-slanted-equals 0> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, in the Banach space <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> has asynchronous exponential growth with intrinsic growth constant <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=lamda 0> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{lambda _0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> provided that there is a nonzero finite rank operator <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper P 0> <mml:semantics> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:annotation encoding=application/x-tex>{P_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> in <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper X> <mml:semantics> <mml:mi>X</mml:mi> <mml:annotation encoding=application/x-tex>X</mml:annotation> </mml:semantics> </mml:math> </inline-formula> such that <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=limit Underscript t right-arrow normal infinity Endscripts e Superscript minus lamda 0 t Baseline upper T left-parenthesis t right-parenthesis equals upper P 0> <mml:semantics> <mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:munder> <mml:mo movablelimits=true form=prefix>lim</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mi>t</mml:mi> <mml:mo stretchy=false>→<!-- → --></mml:mo> <mml:mi mathvariant=normal>∞<!-- ∞ --></mml:mi> </mml:mrow> </mml:munder> </mml:mrow> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msup> <mml:mi>e</mml:mi> <mml:mrow class=MJX-TeXAtom-ORD> <mml:mo>−<!-- − --></mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>λ<!-- λ --></mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> <mml:mi>t</mml:mi> </mml:mrow> </mml:msup> </mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> <mml:mo>=</mml:mo> <mml:mrow class=MJX-TeXAtom-ORD> <mml:msub> <mml:mi>P</mml:mi> <mml:mn>0</mml:mn> </mml:msub> </mml:mrow> </mml:mrow> <mml:annotation encoding=application/x-tex>{lim _{t to infty }}{e^{ - {lambda _0}t}}T(t) = {P_0}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>. Necessary and sufficient conditions are established for <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=upper T left-parenthesis t right-parenthesis> <mml:semantics> <mml:mrow> <mml:mi>T</mml:mi> <mml:mo stretchy=false>(</mml:mo> <mml:mi>t</mml:mi> <mml:mo stretchy=false>)</mml:mo> </mml:mrow> <mml:annotation encoding=application/x-tex>T(t)</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, <inline-formula content-type=math/mathml> <mml:math xmlns:mml=http://www.w3.org/1998/Math/MathML alttext=t greater-than-or-slanted-equals 0> <mml:semantics> <mml:mrow> <mml:mi>t</mml:mi> <mml:mo>⩾<!-- ⩾ --></mml:mo> <mml:mn>0</mml:mn> </mml:mrow> <mml:annotation encoding=application/x-tex>t geqslant 0</mml:annotation> </mml:semantics> </mml:math> </inline-formula>, to have asynchronous exponential growth. Applications are made to a maturity-time model of cell population growth and a transition probability model of cell population growth." @default.
- W2080243363 created "2016-06-24" @default.
- W2080243363 creator A5041966499 @default.
- W2080243363 date "1987-01-01" @default.
- W2080243363 modified "2023-10-18" @default.
- W2080243363 title "An operator-theoretic formulation of asynchronous exponential growth" @default.
- W2080243363 cites W1547644141 @default.
- W2080243363 cites W184656982 @default.
- W2080243363 cites W1970908012 @default.
- W2080243363 cites W1989769217 @default.
- W2080243363 cites W2009817621 @default.
- W2080243363 cites W2015668238 @default.
- W2080243363 cites W2030968034 @default.
- W2080243363 cites W2041592362 @default.
- W2080243363 cites W2048653041 @default.
- W2080243363 cites W2070306734 @default.
- W2080243363 cites W2077052889 @default.
- W2080243363 cites W2112684763 @default.
- W2080243363 cites W4237036802 @default.
- W2080243363 cites W4237339879 @default.
- W2080243363 cites W4240910183 @default.
- W2080243363 cites W4247072205 @default.
- W2080243363 cites W4251579377 @default.
- W2080243363 cites W620325508 @default.
- W2080243363 doi "https://doi.org/10.1090/s0002-9947-1987-0902796-7" @default.
- W2080243363 hasPublicationYear "1987" @default.
- W2080243363 type Work @default.
- W2080243363 sameAs 2080243363 @default.
- W2080243363 citedByCount "79" @default.
- W2080243363 countsByYear W20802433632012 @default.
- W2080243363 countsByYear W20802433632013 @default.
- W2080243363 countsByYear W20802433632014 @default.
- W2080243363 countsByYear W20802433632015 @default.
- W2080243363 countsByYear W20802433632016 @default.
- W2080243363 countsByYear W20802433632017 @default.
- W2080243363 countsByYear W20802433632018 @default.
- W2080243363 countsByYear W20802433632019 @default.
- W2080243363 countsByYear W20802433632020 @default.
- W2080243363 countsByYear W20802433632021 @default.
- W2080243363 countsByYear W20802433632022 @default.
- W2080243363 crossrefType "journal-article" @default.
- W2080243363 hasAuthorship W2080243363A5041966499 @default.
- W2080243363 hasBestOaLocation W20802433631 @default.
- W2080243363 hasConcept C11413529 @default.
- W2080243363 hasConcept C154945302 @default.
- W2080243363 hasConcept C2776321320 @default.
- W2080243363 hasConcept C33923547 @default.
- W2080243363 hasConcept C41008148 @default.
- W2080243363 hasConceptScore W2080243363C11413529 @default.
- W2080243363 hasConceptScore W2080243363C154945302 @default.
- W2080243363 hasConceptScore W2080243363C2776321320 @default.
- W2080243363 hasConceptScore W2080243363C33923547 @default.
- W2080243363 hasConceptScore W2080243363C41008148 @default.
- W2080243363 hasIssue "2" @default.
- W2080243363 hasLocation W20802433631 @default.
- W2080243363 hasOpenAccess W2080243363 @default.
- W2080243363 hasPrimaryLocation W20802433631 @default.
- W2080243363 hasRelatedWork W1490908374 @default.
- W2080243363 hasRelatedWork W151193258 @default.
- W2080243363 hasRelatedWork W1529400504 @default.
- W2080243363 hasRelatedWork W1607472309 @default.
- W2080243363 hasRelatedWork W1871911958 @default.
- W2080243363 hasRelatedWork W1892467659 @default.
- W2080243363 hasRelatedWork W2808586768 @default.
- W2080243363 hasRelatedWork W2998403542 @default.
- W2080243363 hasRelatedWork W3107474891 @default.
- W2080243363 hasRelatedWork W38394648 @default.
- W2080243363 hasVolume "303" @default.
- W2080243363 isParatext "false" @default.
- W2080243363 isRetracted "false" @default.
- W2080243363 magId "2080243363" @default.
- W2080243363 workType "article" @default.