Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080273810> ?p ?o ?g. }
- W2080273810 endingPage "931" @default.
- W2080273810 startingPage "918" @default.
- W2080273810 abstract "In hot climates, the efficiency of energy-intensive industrial facilities utilizing gas turbines for power generation, such as oil refineries and natural gas processing plants (NGPPs), can be enhanced by reducing gas turbine compressor inlet air temperature. This is typically achieved using either evaporative media coolers or electrically-driven mechanical vapor-compression chillers. However, the performance of evaporative media coolers is constrained in high relative humidity (RH) conditions, such as encountered in the Middle East and tropical regions, and such coolers require demineralized water supply, while electrically-driven mechanical vapor-compression chillers consume a significant amount of electric power. In this study, the use of gas turbine exhaust gas waste-heat powered, single-effect water–lithium bromide (H2O–LiBr) absorption chillers is thermo-economically evaluated for gas turbine compressor inlet air cooling scheme, with particular applicability to Middle East NGPPs. The thermodynamic performance of the proposed scheme, integrated in a NGPP, is compared with that of conventional evaporative coolers and mechanical vapor-compression chillers, in terms of key operating parameters, and either demineralized water or electricity consumption, respectively. The results show that in extreme ambient conditions representative of summer in the Persian Gulf (i.e., 55 °C, 80% RH), three steam-fired, single-effect H2O–LiBr absorption chillers utilizing 17 MW of gas turbine exhaust heat, could provide 12.3 MW of cooling to cool compressor inlet air to 10 °C. In the same ambient conditions, evaporative coolers would only provide 2.3 MW cooling capacity, and necessitate consumption of approximately 0.8 kg/s of demineralized water to be vaporized. In addition, mechanical vapor-compression chillers would require an additional 2.7 MW of electric energy to provide the same amount of cooling as H2O–LiBr absorption chillers. The additional electricity generated through gas turbine compressor inlet air cooling using the waste heat powered absorption refrigeration scheme is of approximately 5264 MWh per year, compared to 1774 MWh for evaporative cooling. When integrated with other plant process cooling applications, the proposed scheme would not only permit to both meet gas turbine compressor inlet air cooling loads throughout the year, including peak summer loads, but also provide other process cooling during off-peaks time periods. The economic paypack period of the waste heat recovery scheme is estimated to range from 1.3 to 3.4 years for a three-chiller system based on present and project utility prices for NGPPs in the United Arab Emirates. This study suggests that waste heat absorption refrigeration is an attractive solution to enhance electrical power generation in Middle East NGPPs through gas turbine inlet air cooling, both in terms of thermodynamic and economic feasibility. This strategy would also reduce plant natural gas consumption for power generation, hence production costs and emissions." @default.
- W2080273810 created "2016-06-24" @default.
- W2080273810 creator A5032206511 @default.
- W2080273810 creator A5048815064 @default.
- W2080273810 creator A5077915271 @default.
- W2080273810 date "2013-01-01" @default.
- W2080273810 modified "2023-10-18" @default.
- W2080273810 title "Gas turbine efficiency enhancement using waste heat powered absorption chillers in the oil and gas industry" @default.
- W2080273810 cites W1970803512 @default.
- W2080273810 cites W1971433741 @default.
- W2080273810 cites W1971761927 @default.
- W2080273810 cites W1972333601 @default.
- W2080273810 cites W1974470530 @default.
- W2080273810 cites W1983218146 @default.
- W2080273810 cites W1985225602 @default.
- W2080273810 cites W1986328128 @default.
- W2080273810 cites W1986754414 @default.
- W2080273810 cites W1991625564 @default.
- W2080273810 cites W2000812791 @default.
- W2080273810 cites W2013343226 @default.
- W2080273810 cites W2018263197 @default.
- W2080273810 cites W2027697225 @default.
- W2080273810 cites W2033225794 @default.
- W2080273810 cites W2041675862 @default.
- W2080273810 cites W2046546390 @default.
- W2080273810 cites W2050151455 @default.
- W2080273810 cites W2064324621 @default.
- W2080273810 cites W2066120811 @default.
- W2080273810 cites W2075332627 @default.
- W2080273810 cites W2078742188 @default.
- W2080273810 cites W2083518271 @default.
- W2080273810 cites W2095970878 @default.
- W2080273810 cites W2110281143 @default.
- W2080273810 cites W2121682245 @default.
- W2080273810 cites W2123787343 @default.
- W2080273810 cites W2125046176 @default.
- W2080273810 cites W2129948028 @default.
- W2080273810 doi "https://doi.org/10.1016/j.applthermaleng.2012.06.018" @default.
- W2080273810 hasPublicationYear "2013" @default.
- W2080273810 type Work @default.
- W2080273810 sameAs 2080273810 @default.
- W2080273810 citedByCount "89" @default.
- W2080273810 countsByYear W20802738102013 @default.
- W2080273810 countsByYear W20802738102014 @default.
- W2080273810 countsByYear W20802738102015 @default.
- W2080273810 countsByYear W20802738102016 @default.
- W2080273810 countsByYear W20802738102017 @default.
- W2080273810 countsByYear W20802738102018 @default.
- W2080273810 countsByYear W20802738102019 @default.
- W2080273810 countsByYear W20802738102020 @default.
- W2080273810 countsByYear W20802738102021 @default.
- W2080273810 countsByYear W20802738102022 @default.
- W2080273810 countsByYear W20802738102023 @default.
- W2080273810 crossrefType "journal-article" @default.
- W2080273810 hasAuthorship W2080273810A5032206511 @default.
- W2080273810 hasAuthorship W2080273810A5048815064 @default.
- W2080273810 hasAuthorship W2080273810A5077915271 @default.
- W2080273810 hasConcept C105994980 @default.
- W2080273810 hasConcept C107706546 @default.
- W2080273810 hasConcept C116915560 @default.
- W2080273810 hasConcept C121332964 @default.
- W2080273810 hasConcept C123516432 @default.
- W2080273810 hasConcept C127413603 @default.
- W2080273810 hasConcept C131097465 @default.
- W2080273810 hasConcept C173991790 @default.
- W2080273810 hasConcept C184235594 @default.
- W2080273810 hasConcept C199499590 @default.
- W2080273810 hasConcept C2779139147 @default.
- W2080273810 hasConcept C30487094 @default.
- W2080273810 hasConcept C36570524 @default.
- W2080273810 hasConcept C39432304 @default.
- W2080273810 hasConcept C4638862 @default.
- W2080273810 hasConcept C548081761 @default.
- W2080273810 hasConcept C69907114 @default.
- W2080273810 hasConcept C7694927 @default.
- W2080273810 hasConcept C78519656 @default.
- W2080273810 hasConcept C97355855 @default.
- W2080273810 hasConceptScore W2080273810C105994980 @default.
- W2080273810 hasConceptScore W2080273810C107706546 @default.
- W2080273810 hasConceptScore W2080273810C116915560 @default.
- W2080273810 hasConceptScore W2080273810C121332964 @default.
- W2080273810 hasConceptScore W2080273810C123516432 @default.
- W2080273810 hasConceptScore W2080273810C127413603 @default.
- W2080273810 hasConceptScore W2080273810C131097465 @default.
- W2080273810 hasConceptScore W2080273810C173991790 @default.
- W2080273810 hasConceptScore W2080273810C184235594 @default.
- W2080273810 hasConceptScore W2080273810C199499590 @default.
- W2080273810 hasConceptScore W2080273810C2779139147 @default.
- W2080273810 hasConceptScore W2080273810C30487094 @default.
- W2080273810 hasConceptScore W2080273810C36570524 @default.
- W2080273810 hasConceptScore W2080273810C39432304 @default.
- W2080273810 hasConceptScore W2080273810C4638862 @default.
- W2080273810 hasConceptScore W2080273810C548081761 @default.
- W2080273810 hasConceptScore W2080273810C69907114 @default.
- W2080273810 hasConceptScore W2080273810C7694927 @default.
- W2080273810 hasConceptScore W2080273810C78519656 @default.
- W2080273810 hasConceptScore W2080273810C97355855 @default.
- W2080273810 hasIssue "1" @default.