Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080274454> ?p ?o ?g. }
- W2080274454 endingPage "1338" @default.
- W2080274454 startingPage "1332" @default.
- W2080274454 abstract "This paper describes the relationship between spectral resolution and classification accuracy in analyses of hyperspectral imaging data acquired from crop leaves. The main scope is to discuss and reduce the risk of model over-fitting. Over-fitting of a classification model occurs when too many and/or irrelevant model terms are included (i.e., a large number of spectral bands), and it may lead to low robustness/repeatability when the classification model is applied to independent validation data. We outline a simple way to quantify the level of model over-fitting by comparing the observed classification accuracies with those obtained from explanatory random data. Hyperspectral imaging data were acquired from two crop–insect pest systems: (1) potato psyllid ( Bactericera cockerelli) infestations of individual bell pepper plants ( Capsicum annuum) with the acquisition of hyperspectral imaging data under controlled-light conditions (data set 1), and (2) sugarcane borer ( Diatraea saccharalis) infestations of individual maize plants ( Zea mays) with the acquisition of hyperspectral imaging data from the same plants under two markedly different image-acquisition conditions (data sets 2a and b). For each data set, reflectance data were analyzed based on seven spectral resolutions by dividing 160 spectral bands from 405 to 907 nm into 4, 16, 32, 40, 53, 80, or 160 bands. In the two data sets, similar classification results were obtained with spectral resolutions ranging from 3.1 to 12.6 nm. Thus, the size of the initial input data could be reduced fourfold with only a negligible loss of classification accuracy. In the analysis of data set 1, several validation approaches all demonstrated consistently that insect-induced stress could be accurately detected and that therefore there was little indication of model over-fitting. In the analyses of data set 2, inconsistent validation results were obtained and the observed classification accuracy (81.06%) was only a few percentage points above that obtained using random data (66.7–77.4%). Thus, our analysis highlights a potential risk of model over-fitting and emphasizes the importance of testing for this important aspect as part of developing reliable and robust classification models." @default.
- W2080274454 created "2016-06-24" @default.
- W2080274454 creator A5014613527 @default.
- W2080274454 creator A5019644360 @default.
- W2080274454 creator A5030937684 @default.
- W2080274454 creator A5058040517 @default.
- W2080274454 creator A5077010304 @default.
- W2080274454 date "2013-11-01" @default.
- W2080274454 modified "2023-10-10" @default.
- W2080274454 title "Agricultural Case Studies of Classification Accuracy, Spectral Resolution, and Model Over-Fitting" @default.
- W2080274454 cites W1899502192 @default.
- W2080274454 cites W1964310269 @default.
- W2080274454 cites W1980237824 @default.
- W2080274454 cites W1983709477 @default.
- W2080274454 cites W1990794778 @default.
- W2080274454 cites W2001619934 @default.
- W2080274454 cites W2003383287 @default.
- W2080274454 cites W2004732416 @default.
- W2080274454 cites W2014408679 @default.
- W2080274454 cites W2019246171 @default.
- W2080274454 cites W2023533656 @default.
- W2080274454 cites W2026184927 @default.
- W2080274454 cites W2031834158 @default.
- W2080274454 cites W2034803951 @default.
- W2080274454 cites W2049354775 @default.
- W2080274454 cites W2075478651 @default.
- W2080274454 cites W2079806259 @default.
- W2080274454 cites W2086558249 @default.
- W2080274454 cites W2087685837 @default.
- W2080274454 cites W2089212648 @default.
- W2080274454 cites W2090339465 @default.
- W2080274454 cites W2099655127 @default.
- W2080274454 cites W2099844902 @default.
- W2080274454 cites W2109788341 @default.
- W2080274454 cites W2116036882 @default.
- W2080274454 cites W2118476033 @default.
- W2080274454 cites W2165916356 @default.
- W2080274454 cites W2172324371 @default.
- W2080274454 cites W2213612645 @default.
- W2080274454 cites W2224322393 @default.
- W2080274454 cites W4250988536 @default.
- W2080274454 doi "https://doi.org/10.1366/12-06933" @default.
- W2080274454 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/24160886" @default.
- W2080274454 hasPublicationYear "2013" @default.
- W2080274454 type Work @default.
- W2080274454 sameAs 2080274454 @default.
- W2080274454 citedByCount "27" @default.
- W2080274454 countsByYear W20802744542015 @default.
- W2080274454 countsByYear W20802744542016 @default.
- W2080274454 countsByYear W20802744542017 @default.
- W2080274454 countsByYear W20802744542018 @default.
- W2080274454 countsByYear W20802744542019 @default.
- W2080274454 countsByYear W20802744542020 @default.
- W2080274454 countsByYear W20802744542021 @default.
- W2080274454 countsByYear W20802744542022 @default.
- W2080274454 crossrefType "journal-article" @default.
- W2080274454 hasAuthorship W2080274454A5014613527 @default.
- W2080274454 hasAuthorship W2080274454A5019644360 @default.
- W2080274454 hasAuthorship W2080274454A5030937684 @default.
- W2080274454 hasAuthorship W2080274454A5058040517 @default.
- W2080274454 hasAuthorship W2080274454A5077010304 @default.
- W2080274454 hasConcept C111919701 @default.
- W2080274454 hasConcept C114700698 @default.
- W2080274454 hasConcept C121332964 @default.
- W2080274454 hasConcept C124967146 @default.
- W2080274454 hasConcept C1276947 @default.
- W2080274454 hasConcept C153180895 @default.
- W2080274454 hasConcept C154945302 @default.
- W2080274454 hasConcept C159078339 @default.
- W2080274454 hasConcept C163985040 @default.
- W2080274454 hasConcept C186060115 @default.
- W2080274454 hasConcept C205649164 @default.
- W2080274454 hasConcept C22508944 @default.
- W2080274454 hasConcept C2780331727 @default.
- W2080274454 hasConcept C33923547 @default.
- W2080274454 hasConcept C41008148 @default.
- W2080274454 hasConcept C4839761 @default.
- W2080274454 hasConcept C58489278 @default.
- W2080274454 hasConcept C59822182 @default.
- W2080274454 hasConcept C62649853 @default.
- W2080274454 hasConcept C86803240 @default.
- W2080274454 hasConceptScore W2080274454C111919701 @default.
- W2080274454 hasConceptScore W2080274454C114700698 @default.
- W2080274454 hasConceptScore W2080274454C121332964 @default.
- W2080274454 hasConceptScore W2080274454C124967146 @default.
- W2080274454 hasConceptScore W2080274454C1276947 @default.
- W2080274454 hasConceptScore W2080274454C153180895 @default.
- W2080274454 hasConceptScore W2080274454C154945302 @default.
- W2080274454 hasConceptScore W2080274454C159078339 @default.
- W2080274454 hasConceptScore W2080274454C163985040 @default.
- W2080274454 hasConceptScore W2080274454C186060115 @default.
- W2080274454 hasConceptScore W2080274454C205649164 @default.
- W2080274454 hasConceptScore W2080274454C22508944 @default.
- W2080274454 hasConceptScore W2080274454C2780331727 @default.
- W2080274454 hasConceptScore W2080274454C33923547 @default.
- W2080274454 hasConceptScore W2080274454C41008148 @default.
- W2080274454 hasConceptScore W2080274454C4839761 @default.
- W2080274454 hasConceptScore W2080274454C58489278 @default.