Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080286416> ?p ?o ?g. }
- W2080286416 endingPage "561" @default.
- W2080286416 startingPage "473" @default.
- W2080286416 abstract "1. Introduction 475 1.1 Ion channels 475 1.1.1 Gramicidin 476 1.1.2 Helix bundle channels 477 1.1.3 K channels 480 1.1.4 Porins 483 1.1.5 Nicotinic acetylcholine receptor 483 1.1.6 Physiological properties 483 1.2 Simulations 484 1.2.1 Atomistic versus mean-field simulations 484 2. Atomistic simulations 485 2.1 Modelling of ion-interaction parameters 485 2.1.1 Interatomic distances and the problem of ionic radii 486 2.1.2 Solvation energy 487 2.1.3 Hydration shells and coordination numbers 489 2.1.4 Parameters in common use and transferability 491 2.1.5 Summary 491 2.2 Water in pores versus bulk 491 2.2.1 Simple pore models 494 2.2.2 gA 495 2.2.3 Alm 496 2.2.4 LS3 6 (and LS2 4 ) 496 2.2.5 Nicotinic receptor M2δ 5 497 2.2.6 Influenza A M2 497 2.2.7 K channels 497 2.2.8 nAChR 498 2.2.9 Porins 498 2.2.10 Relevance 499 2.2.11 Problems with simulations 501 2.3 Dynamics of ions in pores 503 2.3.1 Simple pore models 503 2.3.2 Helix bundles 504 2.3.3 gA and KcsA 505 2.4 Energetics of permeation and ion selectivity 509 2.4.1 Potential and free energy profiles 509 2.4.2 gA 510 2.4.3 α-Helix bundles 511 2.4.4 KcsA 512 2.4.5 Ion selectivity 514 2.4.6 Problems of estimating energetic profiles 515 2.5 Conformational changes 516 2.5.1 gA 516 2.5.2 Alm and LS3 516 2.5.3 KcsA 517 2.6 Protonation states 523 3. Coarse-grained simulations 524 3.1 Introduction 524 3.1.1 Predicting conductance magnitudes 525 3.2 Electro-diffusion: the Nernst–Planck approach 526 3.2.1 Calculating the potential profile from Poisson and PB theory 528 3.2.2 Calculating the potential profile from BD simulations 530 3.2.3 Combining Nernst–Planck and Poisson: PNP 530 3.3 Beyond PNP 532 3.4 BD simulations 532 3.4.1 Basic theory in ion channels 532 3.4.2 Incorporating the environment 533 3.5 Applications 535 3.5.1 Model systems 535 3.5.1.1 Solving the Poisson and PB equation for channel-like geometries 535 3.5.1.2 Comparing PB, PNP and BD 536 3.5.2 Applications to known structures 537 3.5.2.1 gA 537 3.5.2.2 Porin 539 3.5.2.3 LS3 540 3.5.2.4 Alm 542 3.5.2.5 nAChR 542 3.5.2.6 KcsA 543 3.6 p K a calculations 543 3.7 Selectivity 544 3.7.1 Anion/cation selectivity 545 3.7.2 Monovalent/divalent ion selectivity 545 4. Problems 546 4.1 Atomistic simulations 546 4.1.1 Problems 546 4.1.2 Parameters 548 4.2 BD 549 4.3 Mean-field simulations 549 5. Conclusions 550 5.1 Progress 550 5.2 The future 550 6. Acknowledgements 551 7. References 551 Ion channels are proteins that form ‘holes’ in membranes through which selected ions move passively down their electrochemical gradients. The ions move quickly, at (nearly) diffusion limited rates ( ca . 10 7 ions s −1 per channel). Ion channels are central to many properties of cell membranes. Traditionally they have been the concern of neuroscientists, as they control the electrical properties of the membranes of excitable cells (neurones, muscle; Hille, 1992). However, it is evident that ion channels are present in many types of cell, not all of which are electrically excitable, from diverse organisms, including plants, bacteria and viruses (where they are involved in functions such as cell homeostasis) in addition to animals. Thus ion channels are of general cell biological importance. They are also of biomedical interest, as several dizeases (‘channelopathies’) have been described which are caused by changes in properties of a specific ion channel (Ashcroft, 2000). Moreover, passive diffusion channels for substances other than ions are common (porins, aquaporins), as are active membrane transport processes coupled to ion gradients or ATP hydrolysis. An understanding of ion channels may also provide a gateway to understanding these processes." @default.
- W2080286416 created "2016-06-24" @default.
- W2080286416 creator A5017696854 @default.
- W2080286416 creator A5027915407 @default.
- W2080286416 creator A5052716174 @default.
- W2080286416 creator A5068989186 @default.
- W2080286416 date "2001-11-01" @default.
- W2080286416 modified "2023-10-18" @default.
- W2080286416 title "Simulation approaches to ion channel structure–function relationships" @default.
- W2080286416 cites W1497554486 @default.
- W2080286416 cites W1521042556 @default.
- W2080286416 cites W1521867405 @default.
- W2080286416 cites W1579048467 @default.
- W2080286416 cites W1591734024 @default.
- W2080286416 cites W1596464958 @default.
- W2080286416 cites W1603838143 @default.
- W2080286416 cites W1625647712 @default.
- W2080286416 cites W1643706501 @default.
- W2080286416 cites W1678317167 @default.
- W2080286416 cites W186727504 @default.
- W2080286416 cites W1947778485 @default.
- W2080286416 cites W1966867657 @default.
- W2080286416 cites W1967242463 @default.
- W2080286416 cites W1967916831 @default.
- W2080286416 cites W1969054385 @default.
- W2080286416 cites W1969583827 @default.
- W2080286416 cites W1970949247 @default.
- W2080286416 cites W1972065621 @default.
- W2080286416 cites W1973111841 @default.
- W2080286416 cites W1973565199 @default.
- W2080286416 cites W1975066996 @default.
- W2080286416 cites W1976121332 @default.
- W2080286416 cites W1976308311 @default.
- W2080286416 cites W1976499671 @default.
- W2080286416 cites W1977240030 @default.
- W2080286416 cites W1977700675 @default.
- W2080286416 cites W1978964533 @default.
- W2080286416 cites W1979325277 @default.
- W2080286416 cites W1980016781 @default.
- W2080286416 cites W1980041497 @default.
- W2080286416 cites W1982028606 @default.
- W2080286416 cites W1982782891 @default.
- W2080286416 cites W1982878325 @default.
- W2080286416 cites W1983454126 @default.
- W2080286416 cites W1984204418 @default.
- W2080286416 cites W1984717522 @default.
- W2080286416 cites W1986113676 @default.
- W2080286416 cites W1987274897 @default.
- W2080286416 cites W1987622073 @default.
- W2080286416 cites W1987847765 @default.
- W2080286416 cites W1988695999 @default.
- W2080286416 cites W1991306189 @default.
- W2080286416 cites W1993151275 @default.
- W2080286416 cites W1993184064 @default.
- W2080286416 cites W1994322758 @default.
- W2080286416 cites W1996196738 @default.
- W2080286416 cites W1996294285 @default.
- W2080286416 cites W1998972448 @default.
- W2080286416 cites W2001887401 @default.
- W2080286416 cites W2003240840 @default.
- W2080286416 cites W2004452275 @default.
- W2080286416 cites W2005970942 @default.
- W2080286416 cites W2007446604 @default.
- W2080286416 cites W2007666187 @default.
- W2080286416 cites W2007726234 @default.
- W2080286416 cites W2008088584 @default.
- W2080286416 cites W2012206547 @default.
- W2080286416 cites W2013351998 @default.
- W2080286416 cites W2013701986 @default.
- W2080286416 cites W2014226560 @default.
- W2080286416 cites W2014660497 @default.
- W2080286416 cites W2016795879 @default.
- W2080286416 cites W2018142647 @default.
- W2080286416 cites W2020039237 @default.
- W2080286416 cites W2020727556 @default.
- W2080286416 cites W2020966733 @default.
- W2080286416 cites W2021188762 @default.
- W2080286416 cites W2021534482 @default.
- W2080286416 cites W2022540192 @default.
- W2080286416 cites W2025771194 @default.
- W2080286416 cites W2025989829 @default.
- W2080286416 cites W2026430007 @default.
- W2080286416 cites W2026885029 @default.
- W2080286416 cites W2027296812 @default.
- W2080286416 cites W2027343672 @default.
- W2080286416 cites W2027710631 @default.
- W2080286416 cites W2028529116 @default.
- W2080286416 cites W2028590095 @default.
- W2080286416 cites W2029899616 @default.
- W2080286416 cites W2030711575 @default.
- W2080286416 cites W2031352284 @default.
- W2080286416 cites W2032655561 @default.
- W2080286416 cites W2034453568 @default.
- W2080286416 cites W2035720425 @default.
- W2080286416 cites W2036690970 @default.
- W2080286416 cites W2037033695 @default.
- W2080286416 cites W2038809515 @default.
- W2080286416 cites W2041134840 @default.