Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080296857> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2080296857 endingPage "21" @default.
- W2080296857 startingPage "12" @default.
- W2080296857 abstract "In a previous paper (Phys. Rev., May, 1928) the authors showed that, for certain values of $D$ the grating space of a crystal of rocksalt, the area under a radial electron distribution (or $U$) curve for chlorine rose above 19 electrons. This result was obtained both from Havighurst's experimental $F$ curve and from $F$ values calculated for a model chlorine ion, these calculated values being modified to take into account the Compton effect. This result seemed perplexing, inasmuch as both the real ion and the model ion have but 18 electrons. The present paper is a further discussion of this point. It is proved that for any symmetrical atom $F$ values, calculated according to the classical theory and unmodified for the Compton effect but multiplied by the Debye temperature factor, give $U$ curves the areas under which never exceed the number of electrons assumed in the model. It is also shown that an unsymmetrical atom gives $F$ values which behave in the same way. But, since both experimental and modified theoretical $F$ values (that is, modified to take account of the Compton effect) give $U$ curves the areas under which do exceed the true number of electrons for certain values of $D$, there is an indication that the Compton effect is involved in the experimental values. The truth of this indication would invalidate the use of the Fourier analysis method as now applied. The present paper also develops the Fourier integral as a quick method of calculating a $U$ curve from a model atom on the classical theory. It is shown that a $U$ curve calculated from Compton's formula $U=(frac{8ensuremath{pi}r}{D})ensuremath{Sigma}stackrel{ensuremath{infty}}{1}(frac{n{F}_{n}}{D}) sin(frac{2ensuremath{pi}mathrm{rn}}{D})$ for a Fourier series is a very close approximation to the true $U$ curve given by the Fourier integral $U(r)=8ensuremath{pi}rensuremath{int}{0}^{ensuremath{infty}}xF(frac{ensuremath{lambda}x}{2})sin2ensuremath{pi}mathrm{rx}mathrm{dx}$ where $F$ is the same function of ($frac{ensuremath{lambda}x}{2}$) as $F$ in the series formula is a function of $sinensuremath{theta}$. An analysis by the Fourier integral of a model supposed to have all the electrons concentrated at the center together with the Debye temperature factor shows that $U(r)$ represents the distribution of electrons about a lattice point and not about the center of the atom." @default.
- W2080296857 created "2016-06-24" @default.
- W2080296857 creator A5017068811 @default.
- W2080296857 creator A5063264935 @default.
- W2080296857 date "1928-07-01" @default.
- W2080296857 modified "2023-10-18" @default.
- W2080296857 title "Interpretation of Atomic Structure Factor Curves in Crystal Reflection of X-Rays" @default.
- W2080296857 cites W1986494521 @default.
- W2080296857 cites W2013091668 @default.
- W2080296857 cites W2033166628 @default.
- W2080296857 cites W2068061963 @default.
- W2080296857 cites W2168802201 @default.
- W2080296857 doi "https://doi.org/10.1103/physrev.32.12" @default.
- W2080296857 hasPublicationYear "1928" @default.
- W2080296857 type Work @default.
- W2080296857 sameAs 2080296857 @default.
- W2080296857 citedByCount "1" @default.
- W2080296857 crossrefType "journal-article" @default.
- W2080296857 hasAuthorship W2080296857A5017068811 @default.
- W2080296857 hasAuthorship W2080296857A5063264935 @default.
- W2080296857 hasConcept C121332964 @default.
- W2080296857 hasConcept C131707115 @default.
- W2080296857 hasConcept C145148216 @default.
- W2080296857 hasConcept C147120987 @default.
- W2080296857 hasConcept C149635348 @default.
- W2080296857 hasConcept C184779094 @default.
- W2080296857 hasConcept C199360897 @default.
- W2080296857 hasConcept C2781285689 @default.
- W2080296857 hasConcept C41008148 @default.
- W2080296857 hasConcept C527412718 @default.
- W2080296857 hasConcept C58312451 @default.
- W2080296857 hasConcept C62520636 @default.
- W2080296857 hasConcept C65682993 @default.
- W2080296857 hasConceptScore W2080296857C121332964 @default.
- W2080296857 hasConceptScore W2080296857C131707115 @default.
- W2080296857 hasConceptScore W2080296857C145148216 @default.
- W2080296857 hasConceptScore W2080296857C147120987 @default.
- W2080296857 hasConceptScore W2080296857C149635348 @default.
- W2080296857 hasConceptScore W2080296857C184779094 @default.
- W2080296857 hasConceptScore W2080296857C199360897 @default.
- W2080296857 hasConceptScore W2080296857C2781285689 @default.
- W2080296857 hasConceptScore W2080296857C41008148 @default.
- W2080296857 hasConceptScore W2080296857C527412718 @default.
- W2080296857 hasConceptScore W2080296857C58312451 @default.
- W2080296857 hasConceptScore W2080296857C62520636 @default.
- W2080296857 hasConceptScore W2080296857C65682993 @default.
- W2080296857 hasIssue "1" @default.
- W2080296857 hasLocation W20802968571 @default.
- W2080296857 hasOpenAccess W2080296857 @default.
- W2080296857 hasPrimaryLocation W20802968571 @default.
- W2080296857 hasRelatedWork W1480356534 @default.
- W2080296857 hasRelatedWork W1977410236 @default.
- W2080296857 hasRelatedWork W1978728391 @default.
- W2080296857 hasRelatedWork W1981948060 @default.
- W2080296857 hasRelatedWork W2018322003 @default.
- W2080296857 hasRelatedWork W2029610600 @default.
- W2080296857 hasRelatedWork W2048015767 @default.
- W2080296857 hasRelatedWork W2060197685 @default.
- W2080296857 hasRelatedWork W2540690721 @default.
- W2080296857 hasRelatedWork W99228725 @default.
- W2080296857 hasVolume "32" @default.
- W2080296857 isParatext "false" @default.
- W2080296857 isRetracted "false" @default.
- W2080296857 magId "2080296857" @default.
- W2080296857 workType "article" @default.