Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080317558> ?p ?o ?g. }
- W2080317558 abstract "In order to endow robots with human-like abilities to characterize and identify objects, they must be provided with tactile sensors and intelligent algorithms to select, control, and interpret data from useful exploratory movements. Humans make informed decisions on the sequence of exploratory movements that would yield the most information for the task, depending on what the object may be and prior knowledge of what to expect from possible exploratory movements. This study is focused on texture discrimination, a subset of a much larger group of exploratory movements and percepts that humans use to discriminate, characterize, and identify objects. Using a testbed equipped with a biologically inspired tactile sensor (the BioTac), we produced sliding movements similar to those that humans make when exploring textures. Measurement of tactile vibrations and reaction forces when exploring textures were used to extract measures of textural properties inspired from psychophysical literature (traction, roughness, and fineness). Different combinations of normal force and velocity were identified to be useful for each of these three properties. A total of 117 textures were explored with these three movements to create a database of prior experience to use for identifying these same textures in future encounters. When exploring a texture, the discrimination algorithm adaptively selects the optimal movement to make and property to measure based on previous experience to differentiate the texture from a set of plausible candidates, a process we call Bayesian exploration. Performance of 99.6% in correctly discriminating pairs of similar textures was found to exceed human capabilities. Absolute classification from the entire set of 117 textures generally required a small number of well-chosen exploratory movements (median = 5) and yielded a 95.4% success rate. The method of Bayesian exploration developed and tested in this paper may generalize well to other cognitive problems." @default.
- W2080317558 created "2016-06-24" @default.
- W2080317558 creator A5038274421 @default.
- W2080317558 creator A5075298131 @default.
- W2080317558 date "2012-01-01" @default.
- W2080317558 modified "2023-09-30" @default.
- W2080317558 title "Bayesian Exploration for Intelligent Identification of Textures" @default.
- W2080317558 cites W173044785 @default.
- W2080317558 cites W1835947927 @default.
- W2080317558 cites W1969299770 @default.
- W2080317558 cites W1987298241 @default.
- W2080317558 cites W1999979692 @default.
- W2080317558 cites W2004162386 @default.
- W2080317558 cites W2032947987 @default.
- W2080317558 cites W2033844149 @default.
- W2080317558 cites W2046572219 @default.
- W2080317558 cites W2051206802 @default.
- W2080317558 cites W2060081565 @default.
- W2080317558 cites W2063517774 @default.
- W2080317558 cites W2063950368 @default.
- W2080317558 cites W2081986553 @default.
- W2080317558 cites W2082280788 @default.
- W2080317558 cites W2114231003 @default.
- W2080317558 cites W2125328830 @default.
- W2080317558 cites W2132867546 @default.
- W2080317558 cites W2168887939 @default.
- W2080317558 cites W2198792286 @default.
- W2080317558 cites W2405457280 @default.
- W2080317558 doi "https://doi.org/10.3389/fnbot.2012.00004" @default.
- W2080317558 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/3389458" @default.
- W2080317558 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/22783186" @default.
- W2080317558 hasPublicationYear "2012" @default.
- W2080317558 type Work @default.
- W2080317558 sameAs 2080317558 @default.
- W2080317558 citedByCount "272" @default.
- W2080317558 countsByYear W20803175582012 @default.
- W2080317558 countsByYear W20803175582013 @default.
- W2080317558 countsByYear W20803175582014 @default.
- W2080317558 countsByYear W20803175582015 @default.
- W2080317558 countsByYear W20803175582016 @default.
- W2080317558 countsByYear W20803175582017 @default.
- W2080317558 countsByYear W20803175582018 @default.
- W2080317558 countsByYear W20803175582019 @default.
- W2080317558 countsByYear W20803175582020 @default.
- W2080317558 countsByYear W20803175582021 @default.
- W2080317558 countsByYear W20803175582022 @default.
- W2080317558 countsByYear W20803175582023 @default.
- W2080317558 crossrefType "journal-article" @default.
- W2080317558 hasAuthorship W2080317558A5038274421 @default.
- W2080317558 hasAuthorship W2080317558A5075298131 @default.
- W2080317558 hasBestOaLocation W20803175581 @default.
- W2080317558 hasConcept C111472728 @default.
- W2080317558 hasConcept C111919701 @default.
- W2080317558 hasConcept C116834253 @default.
- W2080317558 hasConcept C119857082 @default.
- W2080317558 hasConcept C138885662 @default.
- W2080317558 hasConcept C153180895 @default.
- W2080317558 hasConcept C154945302 @default.
- W2080317558 hasConcept C177264268 @default.
- W2080317558 hasConcept C189950617 @default.
- W2080317558 hasConcept C199360897 @default.
- W2080317558 hasConcept C31972630 @default.
- W2080317558 hasConcept C41008148 @default.
- W2080317558 hasConcept C46722567 @default.
- W2080317558 hasConcept C59822182 @default.
- W2080317558 hasConcept C86803240 @default.
- W2080317558 hasConcept C90509273 @default.
- W2080317558 hasConcept C98045186 @default.
- W2080317558 hasConceptScore W2080317558C111472728 @default.
- W2080317558 hasConceptScore W2080317558C111919701 @default.
- W2080317558 hasConceptScore W2080317558C116834253 @default.
- W2080317558 hasConceptScore W2080317558C119857082 @default.
- W2080317558 hasConceptScore W2080317558C138885662 @default.
- W2080317558 hasConceptScore W2080317558C153180895 @default.
- W2080317558 hasConceptScore W2080317558C154945302 @default.
- W2080317558 hasConceptScore W2080317558C177264268 @default.
- W2080317558 hasConceptScore W2080317558C189950617 @default.
- W2080317558 hasConceptScore W2080317558C199360897 @default.
- W2080317558 hasConceptScore W2080317558C31972630 @default.
- W2080317558 hasConceptScore W2080317558C41008148 @default.
- W2080317558 hasConceptScore W2080317558C46722567 @default.
- W2080317558 hasConceptScore W2080317558C59822182 @default.
- W2080317558 hasConceptScore W2080317558C86803240 @default.
- W2080317558 hasConceptScore W2080317558C90509273 @default.
- W2080317558 hasConceptScore W2080317558C98045186 @default.
- W2080317558 hasLocation W20803175581 @default.
- W2080317558 hasLocation W20803175582 @default.
- W2080317558 hasLocation W20803175583 @default.
- W2080317558 hasLocation W20803175584 @default.
- W2080317558 hasOpenAccess W2080317558 @default.
- W2080317558 hasPrimaryLocation W20803175581 @default.
- W2080317558 hasRelatedWork W1891287906 @default.
- W2080317558 hasRelatedWork W2036807459 @default.
- W2080317558 hasRelatedWork W2121558387 @default.
- W2080317558 hasRelatedWork W2161103583 @default.
- W2080317558 hasRelatedWork W2207293383 @default.
- W2080317558 hasRelatedWork W2961085424 @default.
- W2080317558 hasRelatedWork W4206748793 @default.
- W2080317558 hasRelatedWork W4210400012 @default.
- W2080317558 hasRelatedWork W4306674287 @default.