Matches in SemOpenAlex for { <https://semopenalex.org/work/W2080342479> ?p ?o ?g. }
- W2080342479 endingPage "189" @default.
- W2080342479 startingPage "171" @default.
- W2080342479 abstract "We study here the conversion performance of thorium-fueled standard or only slightly modified CANDU and PWR reactors with unchanged core envelope and equipments, to be eventually used as the third and last tier of symbiotic scenarios. For instance, plutonium extracted from the spent fuel of UOX PWRs could be converted in Th/Pu CANDUs to uranium (mainly 233U), finally used to feed a thorium-fueled water-cooled high converting third component. This could be a convenient way to replace likely delayed Generation IV in the case of an important increase of uranium-based energy demand. In order to assess the competitiveness of such symbiotic scenarios, detailed burnup and conversion data are obtained by means of a core-equivalent simulation methodology developed for CANDU-6 and adapted to N4-type PWR. Once-through cycles in CANDU are firstly evaluated for various Th/Pu and Th/233U fuels as regards detailed conversion and basic safety performance. Breeding in Th/233U CANDU is achieved for a 1.30 wt% homogeneous fissile enrichment and a relatively short burnup of 7 GWd/t. Small increase of enrichment (to 1.35 wt%) considerably extends cycle length (to 14 GWd/t) at the cost of slight sub-breeding. Heterogeneity of fissile load can bring another 70% gain on burnup with no significant impact on conversion. Multirecycling gives even shorter burnup (about 5 GWd/t) for the breeding case, while performance close to the once-through 1.35 wt% case is obtained for a slightly sub-breeding regime sustained by a small add of uranium from Th/Pu CANDU. Th/U cycle neutronic analysis explains the convenient feature of almost constant burnup as 233U load is unchanged at each recycle. Two symbiotic scenarios based on UOX PWRs, Th/Pu CANDUs and Th/233U CANDUs in a first open version or optimized Th/U CANDUs in a second closed version are compared. At standard power and moderation levels, Th/233U PWR conversion performance is much lower than CANDU with only a bit more than half of initial fissile load remaining after 50 GWd/t. Contrary to CANDU, fuel heterogeneity does not increase burnup. Conversion is mainly improved by enhanced sub-moderation down to minimal acceptable water over fuel volume ratio of 0.8 at standard power. In this limit case, a 3.00 wt% enrichment ensures a burnup of 33 GWd/t with 80% of initial fissile load remaining. By comparing a few Th/233U CANDU and PWR high converting cases, we understand that main part of the CANDU-PWR conversion gap results from neutron-economical CANDU operation conditions based on frequent online refueling and therefore why sub-moderation improves PWR conversion. From this better understanding, we deduce and preliminarily evaluate two possible ways to really higher conversion with thorium fuel in PWR envelope based on faster spectra either with light water and power derating or with heavy water and Spectral Shift Control." @default.
- W2080342479 created "2016-06-24" @default.
- W2080342479 creator A5003654791 @default.
- W2080342479 creator A5011161966 @default.
- W2080342479 creator A5013744269 @default.
- W2080342479 creator A5016393298 @default.
- W2080342479 creator A5031184334 @default.
- W2080342479 creator A5045998920 @default.
- W2080342479 creator A5054548908 @default.
- W2080342479 creator A5080637728 @default.
- W2080342479 date "2012-02-01" @default.
- W2080342479 modified "2023-10-06" @default.
- W2080342479 title "Comparative analysis of high conversion achievable in thorium-fueled slightly modified CANDU and PWR reactors" @default.
- W2080342479 cites W1522122652 @default.
- W2080342479 cites W1541525649 @default.
- W2080342479 cites W1984020914 @default.
- W2080342479 cites W2032422314 @default.
- W2080342479 cites W2087114693 @default.
- W2080342479 cites W2196389370 @default.
- W2080342479 cites W227867369 @default.
- W2080342479 cites W2315451905 @default.
- W2080342479 cites W2319309507 @default.
- W2080342479 cites W39837478 @default.
- W2080342479 cites W4240696131 @default.
- W2080342479 cites W79415269 @default.
- W2080342479 cites W2042267036 @default.
- W2080342479 doi "https://doi.org/10.1016/j.anucene.2011.08.014" @default.
- W2080342479 hasPublicationYear "2012" @default.
- W2080342479 type Work @default.
- W2080342479 sameAs 2080342479 @default.
- W2080342479 citedByCount "41" @default.
- W2080342479 countsByYear W20803424792012 @default.
- W2080342479 countsByYear W20803424792013 @default.
- W2080342479 countsByYear W20803424792014 @default.
- W2080342479 countsByYear W20803424792015 @default.
- W2080342479 countsByYear W20803424792016 @default.
- W2080342479 countsByYear W20803424792017 @default.
- W2080342479 countsByYear W20803424792018 @default.
- W2080342479 countsByYear W20803424792019 @default.
- W2080342479 countsByYear W20803424792020 @default.
- W2080342479 countsByYear W20803424792021 @default.
- W2080342479 countsByYear W20803424792022 @default.
- W2080342479 countsByYear W20803424792023 @default.
- W2080342479 crossrefType "journal-article" @default.
- W2080342479 hasAuthorship W2080342479A5003654791 @default.
- W2080342479 hasAuthorship W2080342479A5011161966 @default.
- W2080342479 hasAuthorship W2080342479A5013744269 @default.
- W2080342479 hasAuthorship W2080342479A5016393298 @default.
- W2080342479 hasAuthorship W2080342479A5031184334 @default.
- W2080342479 hasAuthorship W2080342479A5045998920 @default.
- W2080342479 hasAuthorship W2080342479A5054548908 @default.
- W2080342479 hasAuthorship W2080342479A5080637728 @default.
- W2080342479 hasConcept C116915560 @default.
- W2080342479 hasConcept C121332964 @default.
- W2080342479 hasConcept C122173349 @default.
- W2080342479 hasConcept C127413603 @default.
- W2080342479 hasConcept C152568617 @default.
- W2080342479 hasConcept C153454851 @default.
- W2080342479 hasConcept C177322064 @default.
- W2080342479 hasConcept C185544564 @default.
- W2080342479 hasConcept C185592680 @default.
- W2080342479 hasConcept C19994219 @default.
- W2080342479 hasConcept C2778260006 @default.
- W2080342479 hasConcept C39432304 @default.
- W2080342479 hasConcept C527038400 @default.
- W2080342479 hasConcept C540271850 @default.
- W2080342479 hasConcept C555451288 @default.
- W2080342479 hasConcept C66882249 @default.
- W2080342479 hasConcept C78310665 @default.
- W2080342479 hasConcept C8138999 @default.
- W2080342479 hasConcept C97355855 @default.
- W2080342479 hasConceptScore W2080342479C116915560 @default.
- W2080342479 hasConceptScore W2080342479C121332964 @default.
- W2080342479 hasConceptScore W2080342479C122173349 @default.
- W2080342479 hasConceptScore W2080342479C127413603 @default.
- W2080342479 hasConceptScore W2080342479C152568617 @default.
- W2080342479 hasConceptScore W2080342479C153454851 @default.
- W2080342479 hasConceptScore W2080342479C177322064 @default.
- W2080342479 hasConceptScore W2080342479C185544564 @default.
- W2080342479 hasConceptScore W2080342479C185592680 @default.
- W2080342479 hasConceptScore W2080342479C19994219 @default.
- W2080342479 hasConceptScore W2080342479C2778260006 @default.
- W2080342479 hasConceptScore W2080342479C39432304 @default.
- W2080342479 hasConceptScore W2080342479C527038400 @default.
- W2080342479 hasConceptScore W2080342479C540271850 @default.
- W2080342479 hasConceptScore W2080342479C555451288 @default.
- W2080342479 hasConceptScore W2080342479C66882249 @default.
- W2080342479 hasConceptScore W2080342479C78310665 @default.
- W2080342479 hasConceptScore W2080342479C8138999 @default.
- W2080342479 hasConceptScore W2080342479C97355855 @default.
- W2080342479 hasIssue "1" @default.
- W2080342479 hasLocation W20803424791 @default.
- W2080342479 hasOpenAccess W2080342479 @default.
- W2080342479 hasPrimaryLocation W20803424791 @default.
- W2080342479 hasRelatedWork W1983635442 @default.
- W2080342479 hasRelatedWork W2002056702 @default.
- W2080342479 hasRelatedWork W2173232737 @default.
- W2080342479 hasRelatedWork W2280414941 @default.